Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Math 2 Geometry Based on Elementary Geometry, 3rd ed, by Alexander & Koeberlein 1.5 Introduction to Geometric Proof Properties of Equality Addition property of equality If a = b, then a + c = b + c Subtraction property of equality If a = b, then a – c = b – c Multiplication property of equality If a = b, then a·c = b·c Division property of equality If a = b and c 0, then a/c = b/c Properties of Inequality Addition property of inequality If a > b, then a + c > b + c Subtraction property of inequality If a > b, then a – c > b – c Multiplication property of inequality If a > b, and c > 0, then a·c > b·c Division property of inequality If a > b and c > 0, then a/c > b/c More Algebra Properties Distributive property a(b + c) = a·b + a·c Substitution property If a = b, then a replaces b in any equation Transitive property If a = b and b = c, then a = c Given: 2(x – 3) + 4 = 10 Prove: x=6 Proof Statements 1. 2(x – 3) + 4 = 10 2. 3. 4. 5. x = 6 Reasons 1. Given 2. 3. 4. 5. Given: 2(x – 3) + 4 = 10 Prove: x=6 Proof Statements 1. 2(x – 3) + 4 = 10 2. 2x – 6 + 4 = 10 3. 4. 5. x = 6 Reasons 1. Given 2. 3. 4. 5. Given: 2(x – 3) + 4 = 10 Prove: x=6 Proof Statements 1. 2(x – 3) + 4 = 10 2. 2x – 6 + 4 = 10 3. 4. 5. x = 6 Reasons 1. Given 2. Distributive Property 3. 4. 5. Given: 2(x – 3) + 4 = 10 Prove: x=6 Proof Statements 1. 2. 3. 4. 5. Reasons 2(x – 3) + 4 = 10 1. Given 2x – 6 + 4 = 10 2. Distributive Property 2x – 2 = 10 3. 4. x=6 5. Given: 2(x – 3) + 4 = 10 Prove: x=6 Proof Statements 1. 2. 3. 4. 5. Reasons 2(x – 3) + 4 = 10 1. Given 2x – 6 + 4 = 10 2. Distributive Property 2x – 2 = 10 3. Substitution 4. x=6 5. Given: 2(x – 3) + 4 = 10 Prove: x=6 Proof Statements 1. 2. 3. 4. 5. 2(x – 3) + 4 = 10 2x – 6 + 4 = 10 2x – 2 = 10 2x = 12 x=6 Reasons 1. Given 2. Distributive Property 3. Substitution 4. 5. Given: 2(x – 3) + 4 = 10 Prove: x=6 Proof Statements 1. 2. 3. 4. 5. 2(x – 3) + 4 = 10 2x – 6 + 4 = 10 2x – 2 = 10 2x = 12 x=6 Reasons 1. 2. 3. 4. 5. Given Distributive Property Substitution Add. Prop. of Equality Given: 2(x – 3) + 4 = 10 Prove: x=6 Proof Statements 1. 2. 3. 4. 5. 2(x – 3) + 4 = 10 2x – 6 + 4 = 10 2x – 2 = 10 2x = 12 x=6 Reasons 1. 2. 3. 4. 5. Given Distributive Property Substitution Add. Prop. of Equality Division Prop. of Eq. Given: A-P-B on seg AB Prove: AP = AB - PB Proof Statements 1. A-P-B on seg AB 2. · · · ?. AP = AB - PB Reasons 1. Given 2. · · · ?. Given: A-P-B on seg AB Prove: AP = AB - PB Proof Statements 1. A-P-B on seg AB 2. · · · ?. AP = AB - PB Reasons 1. Given 2. Segment-Addition Postulate · · · ?. Given: A-P-B on seg AB Prove: AP = AB - PB Proof Statements 1. A-P-B on seg AB 2. AP + PB = AB · · · ?. AP = AB – PB Reasons 1. Given 2. Segment-Addition Postulate · · · ?. Given: A-P-B on seg AB Prove: AP = AB - PB Proof Statements 1. A-P-B on seg AB 2. AP + PB = AB 3. AP = AB – PB Reasons 1. Given 2. Segment-Addition Postulate 3. Given: A-P-B on seg AB Prove: AP = AB - PB Proof Statements 1. A-P-B on seg AB 2. AP + PB = AB 3. AP = AB – PB Reasons 1. Given 2. Segment-Addition Postulate 3. Subtr. Prop. of Equality Given: MN > PQ • M Prove: • N MP > NQ Proof Statements Reasons • P • Q Given: MN > PQ • M Prove: • N MP > NQ Proof Statements Reasons 1. MN > PQ 2. 1. Given 2. ?. MP > NQ ?. • P • Q Given: MN > PQ • M Prove: • N • P • Q MP > NQ Proof Statements Reasons 1. MN > PQ 2. 1. Given 2. Add’n prop of Inequality ?. MP > NQ ?. Given: MN > PQ • M Prove: • N • P • Q MP > NQ Proof Statements Reasons 1. MN > PQ 1. Given 2. MN + NP > PQ + NP 2. Add’n prop of Inequality ?. MP > NQ ?. Given: MN > PQ • M Prove: • N • P • Q MP > NQ Proof Statements Reasons 1. MN > PQ 1. Given 2. MN + NP > PQ + NP 2. Add’n prop of Inequality 3. MN + NP > NP + PQ 3. ?. MP > NQ ?. Given: MN > PQ • M Prove: • N • P • Q MP > NQ Proof Statements Reasons 1. MN > PQ 1. Given 2. MN + NP > PQ + NP 2. Add’n prop of Inequality 3. MN + NP > NP + PQ 3. Commutative prop. of add’n ?. MP > NQ ?. Given: MN > PQ • M Prove: • N • P • Q MP > NQ Proof Statements Reasons 1. MN > PQ 1. Given 2. MN + NP > PQ + NP 2. Add’n prop of Inequality 3. MN + NP > NP + PQ 3. Commutative prop. of add’n 4. MN + NP = MP and 4. NP + PQ = NQ ?. MP > NQ ?. Given: MN > PQ • M Prove: • N • P • Q MP > NQ Proof Statements Reasons 1. MN > PQ 1. Given 2. MN + NP > PQ + NP 2. Add’n prop of Inequality 3. MN + NP > NP + PQ 3. Commutative prop. of add’n 4. MN + NP = MP and 4. Segment Addition Postulate NP + PQ = NQ ?. ?. MP > NQ Given: MN > PQ • M Prove: • N • P • Q MP > NQ Proof Statements Reasons 1. MN > PQ 1. Given 2. MN + NP > PQ + NP 2. Add’n prop of Inequality 3. MN + NP > NP + PQ 3. Commutative prop. of add’n 4. MN + NP = MP and 4. Segment Addition Postulate NP + PQ = NQ 5. Substitution 5. MP > NQ