Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Schroedinger’s equation in 3-dimensions Rohlf 7.6 P213-216 Schroedinger’s Equation ∂Ψ( r ,t) 2 − ∇ Ψ( r ,t) + V ( r )Ψ( r ,t) = i 2m ∂t 2 Separation of variables: Time equation: Space equation: Ψ( r ,t) = ψ ( r )T (t) ∂T iα + T =0 ∂t 2m ∇ ψ + 2 α − V (r ) ψ = 0 2 ( ) Solution to the t dependent equation: ∂T iα + T =0 ∂t Assume an exponential solution: Insert into the diff. eq. above: iα bt bAebt + Ae = 0 iα b+ =0 The solution is then T = Aebt A∂ebt iα bt + Ae = 0 ∂t iα b=− T = Ae − iω t T = Ae ω = α − iα t Solution to time equation. α=E ∂T iE + T =0 ∂t E = hf = ω T = Ae−iω t T= E −i t Ae Solution to time equation. T= E −i t Ae = Ae−iω t Schroedinger space equation in Cartesian coordinates ∂2ψ ∂2ψ ∂2ψ 2m + 2 + 2 + 2 E − V (x, y, z) ψ = 0 2 ∂x ∂y ∂z ( ) 2m 2m 2m p 2 p 2 2 E − V = KE = = = k 2 2 2 2m 2 ( ) note: p and k depend on x, y and z. ∂2ψ ∂2ψ ∂2ψ 2 + + + k ψ =0 2 2 2 ∂x ∂y ∂z Specialize to 2-dimensions.! Solve for 2-dimensional infinite wall box of dimensions Lx = Ly = L Assume the solution can be factorized. ! ψ (x, y) = X (x)Y ( y) Inside the box the particle is free k2 p2 2mE = = 2m E −V = ( ) 2m 2 2 Outside the box, and on the boundries of the box ψ = 0. Outside the box, and on the boundries of the box ψ=0. Inside the box free particle with constant |k| Insert ψ (x, y) = X (x)Y ( y) in Schroedinger's equation: ∂2 ( XY ) ∂2 ( XY ) Y∂2 X X ∂2Y 2 2 + + k XY = + + k XY = 0 2 2 2 2 ∂x ∂y ∂x ∂y Divide by XY Y ∂2 X X ∂ 2Y 1 ∂ 2 X 1 ∂ 2Y 2 2 + + k = + + k =0 XY ∂x 2 XY ∂y 2 X ∂x 2 Y ∂y 2 1 ∂2 X 1 ∂ 2Y 2 2 = − − k = − γ X ∂x 2 Y ∂y 2 ( ) ∂ 2Y + k 2 − γ 2 Y = 0, 2 ∂y ∂2 X +γ 2X = 0 2 ∂x Exercise ∂2 X ∂x 2 ∂2Y +γ X = 0 2 ∂y 2 + β 2Y = 0 Show the following are solutions: X (x) ∝ e±iγ x ( β2 ≡ k2 − γ 2 Y ( y) ∝ e±iβ y ) Assume an exponential solution:! ∂2 X ∂x 2 +γ 2X = 0 X = Aeax a 2 eax + γ 2 eax = 0 ∂ 2Y ∂y 2 ( ) + k 2 − γ 2 Y = 0, b2 eby + k 2 eby − γ 2 eby = 0 a = ±iγ Y = Beby b = ±i k 2 − γ 2 ≡ ± iβ ∂2 X ∂x 2 ∂2Y +γ X = 0 2 ∂y 2 + β 2Y = 0 ( β2 ≡ k2 − γ 2 The following are solutions: ( ) = Ax sin(γ x) + Bx cos(γ x) ( ) = Ay sin( β y) + By cos( β y) X (x) ∝ eiγ x ± e−iγ x Y ( y) ∝ eiβ y ± e−iβ y ) Solution for a free particle. ( ψ (x, y) = X (x)Y ( y) = C eiγ x ± e−iγ x )( ( eiβ y ± e−iβ y ) )( ψ (x, y) = X (x)Y ( y) = Ax sin(γ x) + Bx cos(γ x) Ay sin( β y) + By cos( β y) Apply boundary condition. at x=0 and x = L ψ = 0 ∴ Bx = 0, γ L = nπ at y=0 and y = L ψ = 0 ∴ By = 0, β L = mπ nπ γ = kx = L β = ky = mπ L ) ( ) ( ) X (x) = A eiγ x ± e−iγ x Y ( y) = B eiβ y ± e−iβ y knm = Enm = 2mEnm nπ ( 2mL 2 2 2 2 2 +m π ) = = k xn mπ = k ym L 2 k 2 − k xn Enm = 2 2 nπ L = β = k2 − γ 2 = β = k ym = 2 γ ⇒ 2 2 knm 2m 2 ( 2 2 = k xn + k 2ym 2m n ( 2mL π 22 2 2 k 2 = k xn + k 2ym = knm 2 + m2 ) ) Homework Apply the method of separation of variables to obtain the energy levels of a rigid wall cubical box having sides Lx,Ly,Lz=L π 22 2 2 2 E = n + m + l nml 2mL2 ( ) where n, m and l are integer quantum numbers (note, Rohlf uses n1,n2 and n3 instead of n,m and l) Solution: Assume ψ (x, y, z) = X (x)Y ( y)Z(z) . Insert in Schroedinger's equation. Divide by XYZ: YZ ∂2 X XZ ∂2 Y XY ∂2 Z 1 ∂2 X 1 ∂2Y 1 ∂2 Z 2 + + +k = + + + k2 = 0 = 0 2 2 2 2 2 2 XYZ ∂x XYZ ∂y XYZ ∂z X ∂x Y ∂y Z ∂z ( 1 ∂2 X 1 ∂2Y 1 ∂2 Z =− − − k 2 = −γ 2 2 2 2 X ∂x Y ∂y Z ∂z ( ) 1 ∂2Y 1 ∂2 Z =− − k 2 − γ 2 = −β 2 2 2 Y ∂y Z ∂z ∂2 X ∂x 2 +γ X = 0 2 ∂2Y ∂y 2 ) 1 ∂2Y 1 ∂2 Z + + k 2 − γ 2 = 0, 2 2 Y ∂y Z ∂z ∂2Y ∂y ∂2 Z 2 +β Y =0 ∂z 2 ∂2 Z 2 +β Y =0 2 ( + k −γ −β 2 2 ∂z 2 2 ∂x ( 2 +γ 2X = 0 ) + k2 − γ 2 − β2 Z = 0 ) Z = ∂z ∂2 Z 2 + ηZ = 0 )( ( ∂2 X )( ψ (x, y, z) = X (x)Y ( y)Z(z) = Ax sin(γ x) ± Bx cos(γ x) Ay sin( β y) ± Bz cos( β y) Az sin(η z) ± Bz cos(η z) Ψ(x, y, z) = C sin(γ x) sin( β y) sin(η z) Apply boundary condition at x, y, x each at 0, L nπ mπ lπ γ = ,β= ,η= L L L π2 2 with k = γ + β + η = 2 n + m2 + l 2 L 2 2 2 2 ( ) ) Exercise Suppose an Oxygen atom (Z=8) can be approximated by a cubical potential of side L=5 A (=0.5 nm). What are the quantum energies, in eV, of each electron assuming at most only 2 electrons may occupy each quantum state. Density of states and Fermi energy. Rohlf Ch. 12 Sec.12.6 Quantized momentum k kx = nπ L ky = mπ L kz = lπ L k space or momentum space k ky kz k 2 = k x2 + k 2y + k z2 kx 2 2 p2 k 2 2 E= = = k x + k 2y + k z2 2m 2m 2m Surfaces of constant k2 have constant energy ( ) All states at a radius k have the same energy. ky dk kx kz π π π π3 π3 Volume per state = Δk xn Δk ym Δk zl = = 3 = LLL L V This is the same for all shapes of volumes V for high quantum numbers. Volume in spherical sector = 14 3 1 π k = π k3 83 6 Number of states up to k (or Ek.) ! Rohlf sec. 14.2, p375-377 ! 1 4π 3 π3 Volume in k space up to k vk = k . Volume per state vs = . 8 3 V Number of states up to k : Number of states up to E : π 3 k vk V 3 N = = 6 = k . 2 3 vs 6π π V 2 k = 2m 2 V ⎛ 2m ⎞ N= ⎜ ⎟ 6π 2 ⎝ 2 ⎠ ⎛ 2m ⎞ k =⎜ E ⎝ 2 ⎟⎠ 3 E 3/2 E 3/2 . 3 2 Number of states up to E : V ⎛ 2m ⎞ N= ⎜ ⎟ 6π 2 ⎝ 2 ⎠ 3/2 E 3/2 . Number of states up to E per unit volume : N 1 ⎛ 2m ⎞ = V 6π 2 ⎜⎝ 2 ⎟⎠ 3/2 E 3/2 N 1 ⎛ 2m ⎞ Number of states up to E per unit volume : = V 6π 2 ⎜⎝ 2 ⎟⎠ 3/2 At T =0, electrons fill all states, 2 per state, to the Fermi energy: Ne 1 ⎛ 2m ⎞ = ne = 2 ⎜ 2 ⎟ V 3π ⎝ ⎠ EF = 3/2 3/2 EF ⎛ 2m ⎞ Fermi energy : ne = ⎜⎝ 2 ⎟⎠ EF 2/3 3π 2 2/3 2 h ⎛ 3ne ⎞ 8m ⎜⎝ π ⎟⎠ 1 ( ) 2/3 where h = 2π E 3/2