Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
IOSR Journal of Mathematics (IOSR-JM)
e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 11, Issue 2 Ver. IV (Mar - Apr. 2015), PP 10-23
www.iosrjournals.org
Resolution of Birch and Swinnerton โDyre Conjecture, with respect to the
solutions of the equation ๐๐ + ๐๐ = ๐๐ ๐ข๐ง ๐ฐ๐ก๐จ๐ฅ๐ ๐ง๐ฎ๐ฆ๐๐๐ซ๐ฌ
Mohan Vithu Gaonkar, M.A.; M.Ed.
(New Horizon, PDA Colony, Porvorim, Bardez, Goa, India. 403521)
Abstract: A general method to find complete solution of the equation: ๐2 + ๐2 = ๐2 ๐๐ ๐คโ๐๐๐ ๐๐ข๐๐๐๐๐ , in the
form of formulae, with proof and resolution of Birch and Swinnerton-Dyre conjecture with respect to the
solutions of the equation ๐2 + ๐2 = ๐2 ๐๐ ๐คโ๐๐๐ ๐๐ข๐๐๐๐๐ ,.
Content
1
2
3
4
5
6
7
8
9
10
Abstract
Details of Birch and Swinnerton โDyre conjecture
Introduction and the results
A general method in the form of formulae, to find complete solution of the equation ๐2 + ๐2 = ๐2 in whole
numbers.
Theorem 1: (Non- trivial primitive solutions of the equation ๐2 + ๐2 = ๐2 in whole numbers, when an odd number
xโฅ 3 ,x โN={1,2,3,4,5,6, โฆ โฆ })
Theorem 2 :( Non-trivial primitive solutions of the equation ๐2 + ๐2 = ๐2 in whole numbers, when an even number
xโฅ 4 where x โN={1,2,3,4,5,6, โฆ โฆ })
Theorem 3 :( Derived solutions of the equation ๐2 + ๐2 = ๐2 in whole numbers, from its non-trivial primitive
solutions when an odd number xโฅ3, xโN={1,2,3,4,5,6, โฆ โฆ })
Theorem 4 :( Derived solutions of the equation ๐2 + ๐2 = ๐2 in whole numbers, from its non-trivial primitive
solutions when an even number xโฅ4, xโ ๐ = {1,2,3,4,5,6, โฆ โฆ } )
Resolution of Birch and Swinnerton โDyre Conjecture, with respect to the equation ๐๐ + ๐๐ = ๐๐ :
Case-1
Case-2
Case-3
Case-4
Solved examples
Developing chain solutions like n12 + n22 + n23 + n24 + n25 + n2 6 +. . . โฆ
= n2 in whole numbers, of the equation x 2 + y 2 = z2 , formulae
Total pages
1
1
2
3
3
4
5
5
6
7
8
9
13
14
Details of Birch and Swinnerton โDyre conjecture
Birch and Swinnerton โDyre conjecture, one of the millennium seven problems established, announced and
published by Clay Mathematics Institute of Cambridge Massachusetts (CMT) is as follows:
Mathematicians have always been fascinated by the problem of all solutions in whole numbers x,y,z to algebraic
equation like ๐2 + ๐2 = ๐2 .
Euclid gave the complete solution for that equation, but for more complicated equations this becomes extremely
difficult. Indeed in 1970 Yu. V. Matiyasevich showed that Hilbertโs tenth problem is unsolvable, i.e. there is no
general method for determining when such equations have a solution in whole numbers. But in special cases one
can hope to say something when the solutions are point of an abelian variety, the Birch and Swinnerton-Dyre
conjecture asserts that the size of the group of rational points is related to the behavior of an associated zeta
function ฮถ(s) is equal to zero, then there are infinite number of rational points (solutions), and conversely, if ฮถ (1)
is not equal to 0, then there is only finite number of such points.
I.
1.
Introduction and the results
Formula for finding Non-trivial primitive solutions of the equation ๐ฅ 2 + ๐ฆ 2 = ๐ง 2 in whole numbers, when
an odd number xโค 3, x โN and ๐คโ๐๐ ๐ฅ = 2๐ + 1, ๐ฆ =
12+
2๐+12โ122=
2๐+12+122๐๐๐
OR
When an odd number x โฅ 3, x โN={1,2,3,4,5,6 โฆ โฆ }
๐ฅ2 โ 1
๐กโ๐๐ ๐ฅ 2 +
2
DOI: 10.9790/5728-11241023
2
(2๐+1)2 โ1
2
๐ฅ2 + 1
=
2
, ๐๐๐ ๐ง =
๐๐๐
2๐+1 2 +1
2
,
๐กโ๐๐ 2๐ +
๐โN={1,2,3,4,5,6,โฆโฆ}
2
www.iosrjournals.org
10 | Page
Resolution of Birch and Swinnerton โDyre Conjecture, with respect to the solutions of the โฆโฆ
2.
Formula for finding non trivial primitive solutions of the equation ๐ฅ 2 + ๐ฆ 2 = z 2 in whole numbers, when
an even number xโฅ 4, x โN={1,2,3,4,5,6 โฆ โฆ } and when x=2n+2, y = ๐ + 1 2 โ 1 , and z = ๐ + 1 2 +
1,
๐กโ๐๐ 2n + 2 2 + [ n + 1)^2 โ 1 2 = [ n + 1)^2 + 1 2 ๐๐๐ ๐๐๐ n โ N = {1,2,3,4,5,6, โฆ โฆ }
OR
When an even number x โฅ 2 โN then 2๐ฅ 2 + x 2 โ 1 2 = x 2 + 1 2
3. Formula for finding derived solutions of the equation ๐2 + ๐2 = ๐2 from its non โtrivial primitive
solutions, in whole numbers, when an odd number xโฅ 3, n โN={1,2,3,4,5,6, โฆ โฆ } and x=2n+1,๐ฆ =
2๐+1 2 โ1
, ๐๐๐ z =
2
{1,2,3,4,5,6, โฆ โฆ }
2๐ +1 2 +1
2
2๐+1 2 โ1
then [(n 2n + 1 ]2 + [n
2
2๐+1 2 +1
]2 = [n
2
]2 ๐๐๐ ๐๐๐ ๐ โ ๐ =
OR
๐ ๐ฅ 2 โ1
2
๐ ๐ฅ 2 +1
2
When an odd number xโฅ 3, x โN={1,2,3,4,5,6 โฆ โฆ }, then ๐๐ฅ 2 +
=
2
2
4. Formula for finding derived solutions of the equation ๐2 + ๐2 = ๐2 in whole numbers, from its non-trivial
primitive solutions, when an even number xโฅ 4, xโN={1,2,3,4,5,6, โฆ โฆ } and x=2n+2, y= ๐ + 1 2 โ 1,
And z = ๐ + 1 2 + 1
2
๐กโ๐๐ ๐ 2๐ + 2
+ ๐((๐ + 1 2 โ 1) 2 = (๐ (๐ + 1 2 + 1))^2
When an even number xโฅ4, xโN={1,2,3,4,5,6, โฆ โฆ }
2
๐กโ๐๐ ๐ 2๐ฅ
+ ๐๐ฅ 2 โ 1 2 = ๐๐ฅ 2 + 1 2
For all n โN={1,2,3,4,5,6 โฆ โฆ }
Theorem 1: (Non- trivial primitive solutions of the equation ๐2 + ๐2 = ๐2 in whole numbers, when an odd
number xโฅ 3, x โN={1,2,3,4,5,6 โฆ โฆ })
Let, x = 2n + 1, ๐ฆ =
(2๐+1)2 โ1
2
, ๐๐๐ ๐ง =
2๐+1 2 +1
2
2
2๐ + 1 โ 1
2
Proof :( Using Mathematical Induction)
Let be P๐ the statement
๐กโ๐๐ 2๐ + 1
2
2+
2๐ + 1
=
,
2๐ + 1
2
2
2๐ + 1
2
2+
โ1
2
2
+1
๐๐๐ ๐๐๐ ๐ โ N = {1,2,3,4,5,6, โฆ โฆ }
2
2๐ + 1
2
=
2
+1
2
Basic step: Show ๐1 is true.
For n=1
The left hand side of ๐1 is 2 โ 1 + 1
The right hand side of ๐1 is
2
2โ1+1 2 +1
2
=
2
3 2 +1
2
10 2
=
2
2
+
2
2โ1+1 2
2
= 32 + 42 = 52
= 52
.. . 32 + 42 = 52
.. . L. H. S = R. H. S.
Induction step:
Let kโฅ be an integer and assume
๐๐ is true
That is assume that
2
2๐ + 1 2 โ 1
2๐ + 1
2๐ + 1 2 +
=
2
2
Required to show is true ๐๐ +1 i.e. that
2
2(๐ + 1) + 1 2 โ 1
2(๐ + 1) + 1 2 +
=
2
= {1,2,3,4,5,6, โฆ โฆ }
2
+1
2
๐๐๐ ๐๐๐ ๐ โ N = {1,2,3,4,5,6, โฆ โฆ }
2(๐ + 1) + 1
2
2
+1
2
๐๐๐ ๐๐๐ (๐ + 1) โ N
2
2(๐ +1)+1 2 โ1
L.H.S= 2(๐ + 1) + 1 2 +
2
Consider
2(๐ + 1) + 1 2 = 2k + 2 + 1 = 2k + 3
Consider
DOI: 10.9790/5728-11241023
2
= 4k 2 + 12k + 9
www.iosrjournals.org
(1)
11 | Page
Resolution of Birch and Swinnerton โDyre Conjecture, with respect to the solutions of the โฆโฆ
2
2(๐+1)+1 2 โ1
2
=
2
(2๐ +3) 2 โ1
2
=
4๐ 2 +12๐+8
2
16๐2=4๐4+12๐3+52๐2+16++48๐+16
2
= 2๐ 2 + 6๐ + 4 2 = 4๐ 4 + 36๐ 2 + 16 + 12๐ 3 + 48๐ +
(2)
From (1) & (2)
L.H.S. = 4๐ 4 + 12๐ 3 + 56๐ 2 + 60๐ + 25
R.H.S. =
2
2(๐ +1)+1 2 +1
2
2 2
2๐ +3 2 +1
=
2
=
(3)
2
4๐ 2 +12๐+10
2
= 2๐ 2 + 6๐ + 5
2
=4๐ 4 + 24๐ 3 + 56๐ 2 + 60๐ + 25
(4)
From (3) & (4) we have
L.H.S. =R.H.S.
Hence ๐๐+1 is true is ๐๐ is true
By principle of mathematical induction ๐๐ is true for all nโN={1,2,3,4,5,6, โฆ โฆ } Hence the proof. QED.
Theorem 2: (Non-trivial primitive solutions of the equation ๐2 + ๐2 = ๐2 in whole numbers, when an even
number xโฅ 4 where x โN={1,2,3,4,5,6, โฆ โฆ })
๐โ๐๐ ๐ฅ = 2๐ + 2, ๐ฆ = ๐ + 1 2 โ 1, ๐๐๐ ๐ง = ๐ + 1 2 + 1
๐กโ๐๐ 2๐ + 2 2 + ๐ + 1 2 โ 1 2 = ๐ + 1 2 + 1 2
for all n โ N =
{1,2,3,4,5,6 โฆ โฆ }
Proof: (Using Mathematical Induction)
Let ๐๐ be the statement
2๐ + 2 2 + ๐ + 1 2 โ 1 2 = ๐ + 1 2 + 1 2
Basic step: Show ๐1 is true
For n=1
L.H.S. = 2 โ 1 + 2 2 + 1 + 1 2 โ 1 2 = 32 + 42 = 52
(1)
R.H.S.
=
1 + 1 2 + 1 2 = 52
(2)
From (1) & (2) we have
L.H.S. =R.H.S.
Induction step:
Let kโฅ 1 be an integer and assume
๐๐ is true. That is, assume that
2๐ + 2 2 + ๐ + 1 2 โ 1 2 = ๐ + 1 2 + 1 2
Required to show ๐๐ +1 is true i.e. that
2(๐ + 1) + 2 2 + (๐ + 1) + 1 2 โ 1 2 = (๐ + 1) + 1 2 + 1 2
L.H.S. = 2(๐ + 1) + 2 2 + (๐ + 1) + 1 2 โ 1 2
Consider
2
2(๐ + 1) + 2 2 = 2๐ + 2 + 2 = 4๐ 2 + 16๐ + 16
(3)
Consider
๐ + 1) + 1 2 โ 1 2 = (๐ + 2) โ 1 2 = ( ๐ 2 + 4๐ + 3 2 = ๐ 4 + 8๐ 3 + 22๐ 2 + 24๐ + 9
(4)
From (3) & (4) we have
L.H.S.
=
๐ 4 + 8๐ 3 + 26๐ 2 + 40๐ + 25
(5)
2
2
2
2
R.H.S.
=
๐+1 +1 +1 =
๐+2
+ 1 = ๐ 2 + 4๐ + 4 + 1 2 = ๐ 4 + 8๐ 3 + 26๐ 2 + 40๐ +
25
(6)
From (5) & (6) we have
L.H.S. =R.H.S.
Hence ๐๐ +1 are true if is ๐๐ true. By the principle of Mathematical Induction Pn is true for all nโ ๐ =
1,2,3,4,5,6, โฆ โฆ . Hence the proof.
QED.
Theorem 3: (Derived solutions of the equation ๐2 + ๐2 = ๐2 in whole numbers, from its non-trivial primitive
solutions when an odd number xโฅ3, xโN={1,2,3,4,5,6, โฆ โฆ })
When x=2n+1,๐ฆ =
2๐+1 2 โ1
2
, and ๐ง =
2๐+1 2 +1
2
2
2๐ + 1 โ 1
๐กโ๐๐ (n 2n + 1) + ๐
2
= {1,2,3,4,5,6 โฆ โฆ }
Proof: (Using Mathematical Induction)
Let ๐๐ be statement
2
DOI: 10.9790/5728-11241023
2
= ๐
2๐ + 1
2
2
+1
www.iosrjournals.org
2
for all n โ N
12 | Page
Resolution of Birch and Swinnerton โDyre Conjecture, with respect to the solutions of the โฆโฆ
2
(n 2n + 1)
+
2๐ + 1
2
๐
2
2
โ1
= ๐
2๐ + 1
2
2
2
+1
Basic step: Show ๐1 is true.
For n=1
L.H.S. = (1 2 โ 1 + 1)
R.H.S. = 1
2
2โ1+1 2 +1
+ 1
= 32 + 42 = 52
2
2
(1)
2
10
= 1
2
2
2โ1+1 2 โ1
= 52
2
(2)
โด ๐ฟ. ๐ป. ๐. = ๐
. ๐ป. ๐.
Induction step:
Let kโฅ1 be an integer and assume ๐๐ true, that is, assume that
2
(k 2k + 1)
Required
to
((k + 1) 2(k + 1) + 1)
2
+
2 ๐ +1 +1 2 โ1
๐+1
2
2
2
(๐ + 1)
2
โ 2k + 3
= k+1
is
2(๐ +1)+1 2 โ1
2
2๐ + 1 2 + 1
2
true
= (๐ + 1)
2
+
= ๐
2
2(๐+1)+1 2 โ1
(๐ + 1)
2
2๐ + 1 2 โ 1
2
Pk+1
๐
show
L.H.S. = ((k + 1) 2(k + 1) + 1)
Consider
( k + 1 2(k + 1) + 1)
30k + 9
Consider
+
2(๐ +1)+1 2 +1
i.e.
2
2
2
2
= k 2 + 2k + 1 4k 2 + 12k + 9 = 4k 4 + 20k 3 + 37k 2 +
(3)
2
=( k+1
2
โ 2k 2 + 6k + 4
2
= (k 2 + 2k + 1)(4k 4 + 36k 2 + 16 + 24k 3 +
48k + 16k 2 = 4k 6 + 32k 5 + 104k 4 + 176k^3 + 164k 2 + 80k + 16
From (3) and (4) we have
L.H.S. = 4k 6 + 32k 5 + 108k^4 + 196k^3 + 201k 2 + 110k + 25
R.H.S.
=
(๐ + 1)
that
2
2(๐+1)+1 2 +1
(4)
(5)
2
2
= k+1
2
โ 2k 2 + 6k + 5
2
= 4k 6 + 32k 5 + 108k 4 + 196k 3 +
201k 2 + 110k + 25
(6)
From (5) & (6) we have
L.H.S.=R.H.S.
Hence ๐๐ +1 are true if ๐๐ is true. By the principle of Mathematical Induction ๐๐ is true for all n
โN={1,2,3,4,5,6, โฆ โฆ } Hence the proof.
QED
Theorem 4 :( Derived solutions of the equation ๐2 + ๐2 = ๐2 in whole numbers, from its non-trivial primitive
solutions when an even number xโฅ4, xโ ๐ = {1,2,3,4,5,6, โฆ โฆ })
๐โ๐๐ ๐ฅ = 2๐ + 2, ๐ฆ = ๐ + 1 2 โ 1, ๐๐๐ ๐ง = ๐ + 1 2 ,
2
2
๐กโ๐๐ ๐ 2๐ + 2) 2 + ๐( ๐ + 1 2 โ 1
= ๐ ๐+1 2 +1
๐๐๐ ๐๐๐ ๐ โ ๐
Proof :( Using Mathematical Induction)
Let ๐๐ be the statement
2
2
๐ 2๐ + 2) 2 + ๐( ๐ + 1 2 โ 1
= ๐ ๐+1 2 +1
Basic step: Show ๐1 is true.
For n=1
L.H.S
=
2
2
2
๐ 2๐ + 2) 2 + ๐( ๐ + 1 2 โ 1
= 1 2โ1+2
+ 1 1+1 2โ1
= 42 + 32 = 52
(1}
2
R.H.S. = ๐ ๐ + 1 2 + 1
= (1 1 + 1
โด L.H.S. =R.H.S.
Induction step:
Let
kโฅ1
be
an
integer
DOI: 10.9790/5728-11241023
2
+1
and
2
= 52
assume
(2)
๐๐
www.iosrjournals.org
is
true
that
is
that
13 | Page
Resolution of Birch and Swinnerton โDyre Conjecture, with respect to the solutions of the โฆโฆ
2
2
๐ 2๐ + 2) 2 + ๐( ๐ + 1 2 โ 1
= ๐ ๐+1 2 +1
Required
to
show
is
๐๐ +1 true
i.e.
2
2
2
(๐+1) 2(๐ + 1) + 2) + (๐ + 1)( (๐ + 1) + 1 โ 1
= (๐ + 1) (๐ + 1) + 1 2 + 1
that
2
2
L.H.S. = (๐+1) 2(๐ + 1) + 2) 2 + (๐ + 1)( (๐ + 1) + 1 2 โ 1
Consider
((๐+1) 2(๐ + 1) + 2) 2 = ๐ + 1 2 โ 2๐ + 4 2 = ๐ 2 + 2๐ + 1 4๐ 2 + 16๐ + 16 = 4๐ 4 + 24๐ 3 +
52๐ 2 + 16๐ + 16
(3)
Consider
(๐ + 1) ( ๐ + 1 + 1 2 โ 1 2 = ๐ + 1 2 โ ๐ 2 + 4๐ + 3 2 = ๐ 2 + 2๐ + 1 โ (๐ 4 + 16๐ 2 + 9 + 8๐ 3 +
24๐ + 6๐ 2 = ๐ 6 + 8๐ 5 + 39๐ 4 + 76๐ 3 + 79๐ 2 + 42๐ + 9
(4)
Adding (3) & (4) we have
๐ฟ. ๐ป. ๐. = ๐ 6 + 10๐ 5 + 43๐ 4 + 100๐ 3 + 131๐ 2 + 90๐ + 25
(5)
(๐ + 1) (๐ + 1) + 1
=
2
2
โ ๐ 2 + 4๐ + 5 2 = ๐ 2 + 2๐ + 1 โ ๐ 4 + 8๐ 3 +
26๐2+40๐+25=๐6+10๐5+43๐4+100๐3+131๐2+90๐+25
(6)
From (5) & (6) we have
L.H.S= R.H.S.
Hence ๐๐ +1 are true. By the principle of Mathematical Induction ๐๐ is true for all n โN={1,2,3,4,5,6, โฆ โฆ }
Hence the proof.
QED.
Resolution of Birch and Swinnerton โDyre Conjecture, with respect to the equation ๐๐ + ๐๐ = ๐๐
Birch and Swinnerton โDyre conjecture
When the solutions are points of an abelian variety the conjecture asserts that the size of the group of rational
points is related to the behavior of an associated zeta function ๐(๐ ) near the point s=1.
In particular this amazing conjecture asserts that if ฮถ(s) is equal to 0, then there are an infinite number of rational
points(solutions), and conversely, if ฮถ(1) is not equal to 0, then there is only a finite number of such points.
Case-1
(When non-trivial primitive solutions of the equation ๐2 + ๐2 = ๐2 in whole numbers and an odd number xโฅ
3, x โN={1,2,3,4,5,6, โฆ โฆ })
(2๐ + 1)2 โ 1
2๐ + 1 2 + 1
๐คโ๐๐ ๐ฅ = 2๐ + 1, ๐ฆ =
, ๐๐๐ ๐ง =
,
2
2
2
2
2
2
2๐ + 1 โ 1
2๐ + 1 + 1
๐กโ๐๐ 2๐ + 1 2 +
=
๐๐๐ ๐๐๐ ๐ โ N
2
2
R.H.S.
+1
=( ๐+1
2
Consider the equation
2๐ + 1 2 +
2
2
2๐ +1 2 โ1
2
2๐ +1 2 +1
=
2
2
2๐ +1 2 โ1
2
2
2๐+1 2 +1
โด 2๐ + 1 +
โ
=0
2
2
Using this weight value a series can be developed such that each term of series converges to 0 having one-to-one
correspondence between the weight value of the term and the solution of the equation ๐2 + ๐2 = ๐2 where
each term represents one and only one districts solution of the equation. i.e.
โ
๐=1 ๐n =
โ
๐=1
2๐ + 1
2
2
2๐+1 2 โ1
+
2
โ
2
2๐ +1 2 +1
2
=0 + 0 + 0 + 0 + 0 + o + โฏ
1
1
1
Associating this with ฮถ(1) where Riemann zeta function ฮถ(1)=1 + 2 + 3 + 4 + โฏ
2๐ +1 2 +
๐๐
ฮถ(1)=
0
0
1
2
โ
โ
๐=1 n = ๐=1
0
0
0
0
2
2๐ +1 2 โ1
โ
2
2
2๐ +1 2 +1
2
๐
= + + + + + +โฏ
3
4
5
6
2๐+1 2 +
Partial sum of the nth term =
0
2
2๐ +1 2 โ1
โ
2
๐
2
2๐ +1 2 +1
2
=
(4๐ 4 +8๐ 3 +8๐ 2 +4๐+1 โ 4๐ 4 +8๐ 3 +8๐ 2 +4๐+1
๐
=
0
๐
lim๐โโ ๐ =0=ฮถ (1)
โด ฮถ(1)=0 Hence the series is a trivial infinite series of which each term has one-to one correspondence with the
distinct non-trivial primitive solution of the equation ๐2 + ๐2 = ๐2 . โด It proves that there are infinite distinct
non-trivial primitive solutions of the equation ๐2 + ๐2 = ๐2 , in whole numbers when an odd number xโฅ 3 ,
x โN={1,2,3,4,5,6, โฆ โฆ })
Conversely if ฮถ (1)โ 0
DOI: 10.9790/5728-11241023
www.iosrjournals.org
14 | Page
Resolution of Birch and Swinnerton โDyre Conjecture, with respect to the solutions of the โฆโฆ
Suppose ฮถ (1)โ 0
2๐+1 2 +
Hence
2
2๐ +1 2 โ1
โ
2
2
2๐ +1 2 +1
2
โ 0
๐
โด
2๐ + 1
where nโ 0
2๐ + 1
2
2+
2
2
โ1
2
2๐ + 1
2
โ
+1
2
โ 0
2
2
2๐ + 1 2 โ 1
2๐ + 1 2 + 1
โด 2๐ + 1 +
โ
2
2
A contradiction to the formula, for finding non -trivial primitive solutions of the equation ๐2 + ๐2 = ๐2 in
whole
numbers,
when
an
odd
number
xโฅ 3,
x โN,
i.e.
(2๐ + 1)2 โ 1
2๐ + 1 2 + 1
๐คโ๐๐ ๐ฅ = 2๐ + 1, ๐ฆ =
, ๐๐๐ ๐ง =
,
2
2
2
2
2๐ + 1 2 โ 1
2๐ + 1 2 + 1
๐กโ๐๐ 2๐ + 1 2+
=
๐๐๐ ๐๐๐ ๐ โ N
2
2
2
And to our developed series:
โ
๐=1 ๐๐ =
โ
๐=1
2๐ + 1
2
2๐ +1 2 โ1
2+
2
โ
2
2๐+1 2 +1
2
=0 + 0 + 0 + 0 + 0 +
o+โฏ
So at the most, we can say that if ฮถ (1)โ 0 then there is a finite number of solutions, if we consider 0 solutions
as finite.
Hence, the Birch and Swinnerton-Dyre conjecture holds true for case 1.
QED
Case 2: (When non-trivial primitive solutions of the equation ๐2 + ๐2 = ๐2 in whole numbers and an odd
number xโฅ 3, xโN={1,2,3,4,5,6, โฆ โฆ })
Consider the formula
When ๐ฅ = 2๐ + 2, y = n + 1 2 โ 1, and z = n + 1 2 + 1
then 2n + 2 2 + n + 1 2 โ 1 2 = n + 1 2 + 1 2 for all n โ N
Take
2n + 2 2 + n + 1 2 โ 1 2 = n + 1 2 + 1 2
โด
2n + 2 2 + n + 1 2 โ 1 2 โ n + 1 2 + 1 2 = ๐
L. H. S = 2n + 2 2 +
8n2 + 8n + 4 = 0
n+1
2
โ1
2
โ
n+1
2
+1
2
= n4 + 4n3 + 8n2 + 8n + 4 โ (n4 + 4n3 +
โด L. H. S. = R. H. S
โด
2n + 2 2 + n + 1 2 โ 1 2 โ n + 1 2 + 1 2 = ๐
(1)
Using this weight value a series can be developed such that each term of series converges to 0 having one-to-one
correspondence between the weight value of the term and each solution of the equation ๐2 + ๐2 = ๐2 where
each term represents one and only one district solution of the equation. i.e.
โ
โ
2
+ ๐+1 2 โ1 2 โ ๐+1 2 +1 2 = 0+0+0+0+โฏ
๐=1 ๐๐ = ๐=1 2๐ + 2
1
1
1
Associating ๐(1) with โ
๐=1 ๐n ), where Riemann zeta function ฮถ(1)=1 + 2 + 3 + 4 + โฏ
We get
2
2
2๐ +2 2 + ๐ +1 2 โ1
โ ๐+1 2 +1
๐
๐
โ
ฮถ(1)= โ
๐=1 n = ๐=1
Partial sum of ๐๐กโ terms
=
2
2
2๐+2 2 + ๐+1 2 โ1
โ ๐+1 2 +1
0
๐
๐
=
0
0
0
0
0
=1+2+3+4+5+โฏ
n 4 +4n 3 +8n 2 +8n+4 โ(n 4 +4n 3 +8n 2 +8n+4 0
๐
=๐
lim๐โโ = 0=๐(1)
๐
โด
๐ 1 =0
1. Hence the series is a trivial infinite series of which each term has one-to one correspondence with the
distinct non-trivial primitive solution of the equation ๐2 + ๐2 = ๐2 . โด It proves that there are infinite
distinct non-trivial primitive solutions of the equation ๐2 + ๐2 = ๐2 , in whole numbers when an even
number xโฅ 4 , xโN= {1,2,3,4,5,6, โฆ โฆ })
Conversely if ฮถ (1)โ 0
Suppose ฮถ (1)โ 0
๐ป๐๐๐๐
2
2
2๐ +2 2 + ๐ +1 2 โ1
โ ๐ +1 2 +1
๐
DOI: 10.9790/5728-11241023
โ 0
Where nโ 0
www.iosrjournals.org
15 | Page
Resolution of Birch and Swinnerton โDyre Conjecture, with respect to the solutions of the โฆโฆ
2๐ + 2 2 + ๐ + 1 2 โ 1 2 โ ๐ + 1 2 + 1 2 โ 0
โด 2๐ + 2 2 + ๐ + 1 2 โ 1 2 โ ๐ + 1 2 + 1 2
2. A contradiction to the formula, for finding, non-trivial primitive solutions of the equation ๐2 + ๐2 = ๐2 in
whole numbers, when an even number xโฅ 4, x โN= {1,2,3,4,5,6, โฆ โฆ }, i.e.
When ๐ฅ = 2๐ + 2, y = n + 1 2 โ 1, and z = n + 1 2 + 1
then 2n + 2 2 + n + 1 2 โ 1 2 = n + 1 2 + 1 2 for all n โ N = {1,2,3,4,5,6, โฆ โฆ }
and to our developed series i.e.
โ
โ
2
+ ๐+1 2 โ1 2 โ ๐+1 2 +1 2 = 0+0+0+0+โฏ
๐=1 ๐n= ๐=1 2๐ + 2
So at the most, we can say that if ฮถ (1)โ 0 then there is a finite number of solutions, if we consider 0 solutions
as finite.
Hence, the Birch and Swinnerton-Dyre conjecture holds true for case 2.
โด
QED
Case 3:
When derived solutions of the equation ๐ฅ 2 + ๐ฆ 2 = z 2 in whole numbers, from its non-trivial primitive
solutions, when an odd number xโฅ 3 , xโ ๐ = {1,2,3,4,5,6, โฆ โฆ }.
Consider the formula
(2๐ + 1)2 โ 1
2๐ + 1 2 + 1
, ๐๐๐ ๐ง =
,
2
2
2
2
2๐ + 1 2 โ 1
2๐ + 1 2 + 1
= ๐
๐๐๐ ๐๐๐ ๐ โ N = {1,2,3,4,5,6 โฆ โฆ }
2
2
๐คโ๐๐ ๐ฅ = 2๐ + 1, ๐ฆ =
๐กโ๐๐ ๐(2๐ + 1 )2+ ๐
Consider
2+
๐(2๐ + 1 )
2+
โด
๐(2๐ + 1 )
L.H.S= ๐(2๐ + 1 )2+ ๐
2๐ + 1
2
๐
2
2๐+1 2 โ1
2
โ1
2๐ + 1
2
= ๐
2
โ1
2๐ + 1
2
โ ๐
2
2
2
+1
2
+1
=0
2
2๐ +1 2 +1
โ ๐
2
2
2๐ + 1
2
๐
2
= 4๐6 + 8๐5 + 8๐4 + 4๐3 + ๐2 โ
2
4๐6 + 8๐5 + 8๐4 + 4๐3 + ๐2 = 0
โด ๐ฟ. ๐ป. ๐ = ๐
. ๐ป. ๐
2+
โด
๐(2๐ + 1 )
2
2๐ + 1
2
๐
2
โ1
2๐ + 1
2
โ ๐
2
2
+1
=0
โด Using this weight value a series can be developed such that each term of series converges to 0 having one-toone correspondence between the weight value of the term and the solution of the equation ๐2 + ๐2 = ๐2 where
each term represents one and only one districts solution of the equation. i.e.
โ
๐=1 ๐๐ =
โ
๐=1
๐ 2๐ + 1
2
+ ๐
2๐+1 2 โ1
2
2
2
2๐ +1 2 +1
โ ๐
=0 + 0 + 0 + 0 + 0 + o + โฏ
2
1
1
1
0
0
0
Associating this with ฮถ(1) where Riemann zeta function ฮถ(1)=1 + 2 + 3 + 4 + โฏ
๐ 2๐+1
ฮถ(1)=
โ ๐๐
๐=1 n
=
2+
๐ 2๐ +1
2
โ
๐=1
Partial
2
โ1
๐ 2๐+1
0
+ ๐
2๐ +1 2 โ1
2
2
2๐ +1 2 +1)
โ ๐(
2
๐
โ
๐ 2๐ +1
2
2
+1
2
0
0
0
=1 + 2 + 3 + 4 + 5 + 6 + โฏ
๐
sum
2
2
of
the nth
term
=
2
=
(4๐ 6 +8๐ 5 +8๐ 4 +4๐ 3 +๐ 2 โ 4๐ 6 +8๐ 5 +8๐ 4 +4๐ 3 +๐ 2
๐
0
=๐
lim๐โโ ๐ =0=ฮถ (1)
โด ฮถ(1)=0 Hence the series is a trivial infinite series of which each term has one-to one correspondence with the
distinct non-trivial primitive solution of the equation ๐2 + ๐2 = ๐2 . โด It proves that there are infinite derived
DOI: 10.9790/5728-11241023
www.iosrjournals.org
16 | Page
Resolution of Birch and Swinnerton โDyre Conjecture, with respect to the solutions of the โฆโฆ
solutions from each of distinct non-trivial primitive solutions of the equation ๐2 + ๐2 = ๐2 , in whole numbers
when an odd number xโฅ 3 , x โN= {1,2,3,4,5,6, โฆ โฆ })
Conversely if ฮถ (1)โ 0
Suppose ฮถ (1)โ 0
Hence
2
๐ 2๐+1
+ ๐
2
2๐ +1 2 โ1
2
2
2๐ +1 2 +1)
2
โ ๐(
๐
โด ๐ 2๐ + 1
2
โ 0
Where nโ 0
2๐ + 1
2
+ ๐
2
โ1
2
2๐ + 1
2
โ ๐(
2
+ 1)
2
โ 0
2
2
2๐ + 1 2 โ 1
2๐ + 1 2 + 1)
โด ๐ 2๐ + 1 + ๐
โ ๐(
)
2
2
A contradiction to the formula, for finding derived solutions of the equation ๐ฅ 2 + ๐ฆ 2 = z 2 in whole numbers,
from its non-trivial primitive solutions, when an odd number xโฅ 3 , xโ ๐. i. e.
(2๐ + 1)2 โ 1
2๐ + 1 2 + 1
๐คโ๐๐ ๐ฅ = 2๐ + 1, ๐ฆ =
, ๐๐๐ ๐ง =
,
2
2
2
2
2๐ + 1 2 โ 1
2๐ + 1 2 + 1
๐กโ๐๐ ๐(2๐ + 1 )2+ ๐
= ๐
๐๐๐ ๐๐๐ ๐ โ N = {1,2,3,4,5,6, โฆ โฆ }
2
2
and to our developed series i.e.
2
โ
๐=1 ๐๐ =
โ
๐=1
๐ 2๐ + 1
2
+ ๐
2๐+1 2 โ1
2
2
โ ๐
2
2๐ +1 2 +1
=0 + 0 + 0 + 0 + 0 + o + โฏ
2
So at the most, we can say that if ฮถ (1)โ 0 then there is a finite number of solutions, if we consider 0 solutions
as finite.
Hence, the Birch and Swinnerton-Dyre conjecture holds true for case 3.
Case 4: (When derived solutions from non-trivial primitive solutions of the equation ๐2 + ๐2 = ๐2 in whole
numbers when an odd number xโฅ 3, xโN={1,2,3,4,5,6, โฆ โฆ })
Consider the formula
When ๐ฅ = ๐ 2๐ + 2 , y = (n n + 1) 2 โ 1, and z = (n n + 1) 2 + 1
then(n 2n + 2) 2 + (n n + 1 2 โ 1) 2 = (n n + 1 2 + 1) 2 for all n โ N = {1,2,3,4,5,6 โฆ โฆ }
Take
n(2n + 2) 2 + (n n + 1 2 โ 1) 2 = (n n + 1 2 + 1) 2
โด
(n 2n + 2) 2 + (n n + 1 2 โ 1) 2 โ (n n + 1 2 + 1) 2 = ๐
L. H. S = (n 2n + 2) 2 + (n n + 1 2 โ 1) 2 โ (n n + 1 2 + 1) 2 = n6 + 4n5 + 8n4 + 8n3 + 4n2 โ
(n6 + 4n5 + 8n4 + 8n^3 + 4n^2 = 0
โด L. H. S. = R. H. S
โด
(n 2n + 2) 2 + (n n + 1 2 โ 1) 2 โ (n n + 1 2 + 1) 2 = ๐
(1)
Using this weight value a series can is developed such that each term of series converges to 0 having one-to-one
correspondence between the weight value of the term and each solution of the equation ๐2 + ๐2 = ๐2 where
each term represents one and only one district solution of the equation. i. e.
2
2
โ
โ
๐ 2๐ + 2
+ ๐ ๐+1 2 โ1
โ (๐ ๐ + 1 2 + 1) 2 = 0 + 0 + 0 + 0 + โฏ
๐=1 ๐๐ = ๐=1
โ
๐=1 ๐n
Associating ๐(1) with
We get
โ ๐๐
๐=1 n
โ
๐=1
2
2
(๐ 2๐+2) 2 +(๐ ๐ +1 2 โ1)
โ(๐ ๐+1 2 +1)
ฮถ(1)=
=
Partial sum of ๐๐กโ term
=
2
2
(๐ 2๐ +2) 2 +(๐ ๐ +1 2 โ1)
โ(๐ ๐ +1 2 +1)
0
๐
1
1
1
2
3
4
), where Riemann zeta function ฮถ(1)=1 + + + + โฏ
๐
=
0
0
0
0
0
1
2
3
4
5
= + + + + +โฏ
n 6 +4n 5 +8n 4 +8n 3 +42 โ(n 6 +4n 5 +8n 4 +8nn 3 +4n 2 0
๐
=๐
lim๐โโ = 0=๐(1)
๐
โด
๐ 1 =0
DOI: 10.9790/5728-11241023
www.iosrjournals.org
17 | Page
Resolution of Birch and Swinnerton โDyre Conjecture, with respect to the solutions of the โฆโฆ
Hence the series is a trivial infinite series of which each term has one-to one correspondence with the distinct
derived solutions from non-trivial primitive solution of the equation ๐2 + ๐2 = ๐2 . โด It proves that there are
infinite distinct derived solutions from non-trivial primitive solutions of the equation ๐2 + ๐2 = ๐2 , in whole
numbers when an even number xโฅ 4 , xโN={1,2,3,4,5,6, โฆ โฆ })
Conversely if ฮถ (1)โ 0
Suppose ฮถ (1)โ 0
Hence
2
2
(๐ 2๐ +2) 2 +(๐ ๐+1 2 โ1) โ(๐ ๐ +1 2 +1)
โ 0 , ๐คโ๐๐๐ ๐ โ 0
โด (n 2n + 2) + (n n + 1 2 โ 1) 2 โ (n n + 1 2 + 1) 2 โ 0
โด (n 2n + 2) 2 + (n n + 1 2 โ 1) 2 โ (n n + 1 2 + 1) 2
A contradiction to the formula, for finding derived solutions of the equation ๐ฅ 2 + ๐ฆ 2 = z 2 in whole numbers,
from its non-trivial primitive solutions, when an even number xโฅ 4 , xโ ๐ = {1,2,3,4,5,6, โฆ โฆ }. i. e.
When ๐ฅ = ๐ 2๐ + 2 , y = (n n + 1) 2 โ 1, and z = (n n + 1) 2 + 1
then(n 2n + 2) 2 + (n n + 1 2 โ 1) 2 = (n n + 1 2 + 1) 2 for all n โ N
and to our developed series i.e.
2
2
โ
โ
๐ 2๐ + 2
+ ๐ ๐+1 2 โ1
โ (๐ ๐ + 1 2 + 1) 2 = 0 + 0 + 0 + 0 + โฏ
๐=1 ๐๐ = ๐=1
๐
2
So at the most, we can say that if ฮถ (1)โ 0 then there is a finite number of solutions, if we consider 0 solutions
as finite.
Hence, the Birch and Swinnerton-Dyre conjecture holds true for case 4.
QED
Proofs of cases 1-4 resolves the Birch and Swinnerton-Dyre conjecture with respect to the equation ๐2 + ๐2 =
๐2 whose solutions are in whole numbers, i.e. if ฮถ(1)=0, then there are infinite number of solutions to the
equation ๐2 + ๐2 = ๐2 in whole numbers and conversely if ฮถ(1)โ 0, there are finite number of solution to the
equation ๐2 + ๐2 = ๐2 in whole numbers. So the Birch and Swinnerton โDyre conjecture holds true with
respect to the equation ๐2 + ๐2 = ๐2 .
SOLVED EXAMPLES
Formula for finding Non-trivial primitive solutions of the equation x^2+y^2=x^2 in whole numbers, when an
odd
number
xโค 3,
x
โN= {1,2,3,4,5,6, โฆ โฆ }
and
๐คโ๐๐ ๐ฅ = 2๐ + 1, ๐ฆ =
2๐+1 2 +1
2
(2๐+1)2 โ1
2
2
, ๐๐๐ ๐ง =
2๐+1 2 +1
2
,
๐กโ๐๐ 2๐ + 1
2+
2โ1+1 2 +1
10
2
2๐+1 2 โ1
=
2
๐๐๐ ๐๐๐ ๐ โ N = {1,2,3,4,5,6 โฆ โฆ }
Examples
๏ท
When n=1 we have x=2*1+1=3, y=
When
๏ท
n=2
we
(2โ1+1)2 โ1 8
have
When n=3 we have x=2*3+1=7, ๐ฆ =
=2=4, ๐ง =
โด 32 + 42 = 52
2
2
=
(2โ2+1)2 โ1
x=2*2+1=5,๐ฆ =
โด 52 + 122 = 132
(2โ3+1)2 โ1
2
48
= 2 = 24, ๐๐๐ ๐ง =
2
2
โด 7 + 242 = 252
๐โ๐๐ ๐ = 4 ๐ค๐ โ๐๐ฃ๐ ๐ฅ = 2 โ 4 + 1 = 9, ๐ฆ =
(2โ4+1)2 โ1
80
2
=
=5
24
2
= 12, ๐ง =
2โ3+1 2 +1
2
= 2 = 40, ๐๐๐ ๐ง =
2
2
โด 9 + 40 = 412
120
๐โ๐๐ ๐ฅ = 5 ๐ค๐ โ๐๐ฃ๐ ๐ฅ = 2 โ 5 + 1 = 11, ๐ฆ =
= 2 = 60, ๐๐๐ ๐ง =
2
โด
112 + 602 = 612
OR
When an odd number x โฅ 3, x โN= {1,2,3,4,5,6, โฆ โฆ }
2
2
๐ฅ2 โ 1
๐ฅ2 + 1
๐กโ๐๐ ๐ฅ 2 +
=
2
2
๐ธ๐ฅ๐๐๐๐๐๐
When
2
2
32 โ 1
32 + 1
2
๐กโ๐๐ 3 +
=
2
2
DOI: 10.9790/5728-11241023
www.iosrjournals.org
50
2
2โ4+1 2 +1
2
(2โ5+1)2 โ1
=
2
2โ2+1 2 +1
=
26
2
= 13
= 25
=
2โ5+1 2 +1
2
2
82
2
=
= 41
122
2
= 61
x=3,
18 | Page
Resolution of Birch and Swinnerton โDyre Conjecture, with respect to the solutions of the โฆโฆ
โด 32 + 42 = 5^2
2
52 โ 1
52 + 1
๐โ๐๐ ๐ฅ = 5 ๐ค๐ โ๐๐ฃ๐ ๐กโ๐๐ 52 +
=
2
2
โด 52 + 122 = 13^2
๐โ๐๐ ๐ฅ = 7
We
have
2
2
2
2
7 โ1
7 +1
๐กโ๐๐ 72 +
=
2
2
2
2
2
โด 7 + 24 = 25
When
x=9
we
have
2
2
2
2
9 โ1
9 +1
๐กโ๐๐ 92 +
=
2
2
2
2
2
โด 9 + 40 = 41
2
2
2
11
โ
1
112 + 1
๐โ๐๐ ๐ฅ = 11 ๐ค๐ โ๐๐ฃ๐ ๐กโ๐๐ 112 +
=
2
2
โด 112 + 602 = 612
Formula for finding non trivial primitive solutions of the equation ๐ฅ 2 + ๐ฆ 2 = z 2 in whole numbers, when an
even number xโฅ 4, x โN and when x=2n+2, y = ๐ + 1 2 โ 1 , and z = ๐ + 1 2 + 1,
๐กโ๐๐ 2n + 2 2 +
2
2
[ n + 1)^2 โ 1 = [ n + 1)^2 + 1 ๐๐๐ ๐๐๐ n โ N = {1,2,3,4,5,6, โฆ โฆ }
Examples
When n=1, then we have ๐ฅ = 2 โ 1 + 2 = 4, y = 1 + 1 2 โ 1 = 3 , and z = 1 + 1 2 + 1 = 5
โด 42 + 32 = 52
๐โ๐๐ ๐ = 2, ๐กโ๐๐ ๐ค๐ โ๐๐ฃ๐ ๐ฅ = 2 โ 2 + 2 = 6,
y = 2 + 1 2 โ 1 = 8, and z = 2 + 1 2 + 1 = 10
โด 62 + 82 = 102
๐โ๐๐ ๐ = 3, ๐กโ๐๐ ๐ค๐ โ๐๐ฃ๐ ๐ฅ = 2 โ 3 + 2 = 8, ๐ฆ = 3 + 1 2 โ 1 = 15, ๐๐๐ ๐ง = 3 + 1 2 + 1 = 17
โด 82 + 152 = 172
๐โ๐๐ ๐ = 4, ๐กโ๐๐ ๐ค๐ โ๐๐ฃ๐ ๐ฅ = 2 โ 4 + 2 = 10, ๐ฆ = 4 + 1 2 โ 1 = 24, ๐๐๐ ๐ง = 4 + 1 2 + 1 = 26
โด 102 + 242 = 262
๐โ๐๐ ๐ = 5, ๐กโ๐๐ ๐ค๐ โ๐๐ฃ๐ ๐ฅ = 2 โ 5 + 2 = 12, ๐ฆ = 5 + 1 2 โ 1 = 35, ๐๐๐ ๐ง = 5 + 1 2 + 1 = 37
โด 122 + 352 = 372
OR
When an even number x โฅ 4 โN then 2๐ฅ 2 + x 2 โ 1 2 = x 2 + 1 2
When x=4, then 2 โ 4 2 + 42 โ 1 2 = 42 + 1 2
โด 82 + 152 = 172
๐โ๐๐ ๐ฅ = 6, ๐กโ๐๐ 2 โ 6 2 + 62 โ 1 2 = 62 + 1 2
โด 122 + 352 = 372
๐โ๐๐ ๐ฅ = 8, ๐กโ๐๐ 2 โ 8 2 + 82 โ 1 2 = 82 + 1 2
โด 162 + 632 = 652
๐โ๐๐ ๐ฅ = 10, ๐กโ๐๐ 2 โ 10 2 + 102 โ 1 2 = 102 + 1 2
โด 202 + 992 = 1012
Formula for finding derived solutions of the equation ๐2 + ๐2 = ๐2 from its non โtrivial primitive solutions, in
2
whole numbers, when an odd number xโฅ 3, n โN={1,2,3,4,5,6, โฆ โฆ } and x=2n+1,๐ฆ =
2๐+1 2 +1
2๐+1 2 โ1
2
2
then [(n 2n + 1 ]2 + [n
When n=1, then
x=2*1+1=3, ๐ฆ =
2โ1+1 2 โ1
2
= 4, ๐๐๐ z =
]2 = [n
2๐+1 2 +1
2
2๐ +1 2 โ1
2
, ๐๐๐ z =
]2 ๐๐๐ ๐๐๐ ๐ โ ๐ = {1,2,3,4,5,6 โฆ โฆ }
2โ1+1 2 +1
then [(1 2 โ 1 + 1 ]2 + [1
=5
2โ1+1 2 โ1 2
] = [1
2
2
2โ1+1
2
2
+1
]2
โด (1 โ 3)2 + (1 โ 4)2 = (1 โ 5)2
โด 32 + 42 = 52
When n=2, then x=2*2+1=5, ๐ฆ =
then
2โ2+1 2 โ1
2
[(2 2 โ 2 + 1 ]2 + [2
DOI: 10.9790/5728-11241023
= 12, ๐๐๐ z =
2โ2+1
2
2
โ1
2โ2+1 2 +1
2
]2 = [2
= 13
2โ2+1
2
www.iosrjournals.org
2
+1
]2
19 | Page
Resolution of Birch and Swinnerton โDyre Conjecture, with respect to the solutions of the โฆโฆ
โด (2 โ 5)2 + (2 โ 12)2 = (2 โ 13)2
โด (10)2 + (24)2 = (26)2
2โ3+1 2 โ1
2โ3+1 2 +1
2โ4+1 2 โ1
2โ4+1 2 +1
๐โ๐๐ ๐ = 3, ๐กโ๐๐ x=2*3+1=7, ๐ฆ =
= 24, ๐๐๐ z =
= 25
2
2
2
2
๐กโ๐๐ 3 โ 7 + 3 โ 24 = (3 โ 25)^2
โด 212 + 722 = 752
๐โ๐๐ ๐ = 4, ๐กโ๐๐ x=2*4+1=9, ๐ฆ =
= 40, ๐๐๐ z =
= 41
2
2
๐กโ๐๐ 4 โ 9 2 + 4 โ 40 2 = 4 โ 41 2
โด 362 + 1602 = 1642
2โ5+1 2โ1
2โ5+1 2 +1
๐โ๐๐ ๐ = 5, ๐กโ๐๐ ๐ฅ = 2 โ 5 + 1 = 11, ๐ฆ =
= 60, ๐๐๐ ๐ง =
= 61
2
2
2
2
2
๐กโ๐๐ 5 โ 11 + 5 โ 60 = 5 โ 61
โด 552 + 3002 = 3052
And so on
Take any non-trivial solution of the equation ๐2 + ๐2 = ๐2 in whole numbers and multiply both sides of the
solution by nโ ๐ = 1,2,3,4,5,6, โฆ โฆ
Example-1
โด 32 + 42 = 52
When n=1, we have
โด 1โ3 2 + 1โ4 2 = 1โ5 2
โด 32 + 42 = 52
When
n=2,
we
have
โด 2โ3 2 + 2โ4 2 = 2โ5 2
โด 62 + 82 = 102
When
n=3,
we
have
โด 3โ3 2 + 3โ4 2 = 3โ5 2
โด 92 + 122 = 152
๐โ๐๐ ๐ = 4, ๐ค๐ โ๐๐ฃ๐ 4 โ 3 2 + 4 โ 4 2 = 4 โ 5 2
โด 122 + 162 = 202
๐โ๐๐ ๐ = 5, ๐ค๐ โ๐๐ฃ๐ 5 โ 3 2 + 5 โ 4 2 = 5 โ 5 2
โด 152 + 202 = 252
And so on
Example-2
52 + 122 = 132
๐โ๐๐ ๐ = 1, ๐กโ๐๐ 1 โ 5 2 + 1 โ 12 2 = (1 โ 13)2
52 + 122 = 132
๐โ๐๐ ๐ = 2, ๐กโ๐๐ 2 โ 5 2 + 2 โ 12 2 = (2 โ 13)2
102 + 242 = 262
๐โ๐๐ ๐ = 3, ๐กโ๐๐ 3 โ 5 2 + 3 โ 12 2 = (3 โ 13)2
152 + 362 = 392
๐โ๐๐ ๐ = 4, ๐กโ๐๐ 4 โ 5 2 + 4 โ 12 2 = (4 โ 13)2
202 + 482 = 522
๐โ๐๐ ๐ = 5, ๐กโ๐๐ 5 โ 5 2 + 5 โ 12 2 = (5 โ 13)2
252 + 602 = 652
๐๐๐ ๐ ๐ ๐๐
OR
When an odd number xโฅ 3, xโN= {1,2,3,4,5,6, โฆ โฆ }, then
When X=3 and n=1 we have
When X=3 and n=2 we have
1โ3
2โ3
2
2
+
+
1 3 2 โ1
2
2
=
2
๐๐ฅ
1 3 2 +1
2
=
2
+
๐ ๐ฅ 2 โ1
2
2
=
๐ ๐ฅ 2 +1
2
2
for all nโ ๐
2
โด 3 + 42 = 52
2 3 2 โ1
2
2
2 3 2 +1
2
2
โด 62 + 82 = 102
When X=3 and n=3 we have
3โ3
2
+
3 3 2 โ1
2
2
=
3 3 2 +1
2
2
โด 92 + 122 = 152
DOI: 10.9790/5728-11241023
www.iosrjournals.org
20 | Page
Resolution of Birch and Swinnerton โDyre Conjecture, with respect to the solutions of the โฆโฆ
When X=3 and n=4 we have
4โ3
2
+
4 3 2 โ1
2
=
2
4 3 2 +1
2
2
โด 122 + 162 = 202
When X=3 and n=5 we have
5โ3
2
+
5 3 2 โ1
2
=
2
5 3 2 +1
2
2
โด 152 + 202 = 252
๐๐๐ ๐ ๐ ๐๐
Formula for finding derived solutions of the equation ๐2 + ๐2 = ๐2 in whole numbers, from its non-trivial
primitive solutions, when an even number xโฅ 4, xโN= {1,2,3,4,5,6 โฆ โฆ } and x=2n+2, y= ๐ + 1 2 โ 1,
And z = ๐ + 1 2 + 1
2
๐กโ๐๐ ๐ 2๐ + 2
+ ๐((๐ + 1 2 โ 1) 2 = (๐ (๐ + 1 2 + 1))^2,
For all n โN={1,2,3,4,5,6 โฆ โฆ }.
Examples
๐โ๐๐ ๐ = 1, ๐กโ๐๐ 1 2 โ 1 + 2
2
+
1((1 + 1
2
โ1
2
= 1 1+1
2
+1
2
โด 42 + 32 = 52
๐โ๐๐ ๐ = 2, ๐กโ๐๐, ๐ฅ = 2 2 โ 2 + 2 , ๐ฆ = 2 + 1 2 โ 1, ๐๐๐ ๐ง
= 2 + 1 2 + 1, ๐กโ๐๐, 2 โ 6 2 + (2 โ (32 ) โ 1))^2 =
122 + 162 = 202
๐โ๐๐ ๐ = 3, ๐กโ๐๐, ๐ฅ = 3 2 โ 3 + 2 , ๐ฆ = 3 + 1 2 โ 1, ๐๐๐ ๐ง = 3 + 1 2 + 1, ๐กโ๐๐,
(3 โ 8)2 + (3 โ 15)2 = (3 โ 17)2
242 + 452 = 512
๐โ๐๐ ๐ = 4, ๐กโ๐๐, ๐ฅ = 4 2 โ 4 + 2 , ๐ฆ = 4 + 1 2 โ 1, ๐๐๐ ๐ง = 4 + 1 2 + 1, ๐กโ๐๐,
(4 โ 10)2 + (4 โ 24)2 = (4 โ 26)2
402 + 962 = 1042
๐โ๐๐ ๐ = 5, ๐กโ๐๐, ๐ฅ = 5 2 โ 5 + 2 , ๐ฆ = 5 + 1 2 โ 1, ๐๐๐ ๐ง = 5 + 1 2 + 1, ๐กโ๐๐,
5 โ 12 2 + (5 โ 35)2 = 5 โ 37 2
602 + 1752 = 1852
OR
When an even number xโฅ2, xโN={1,2,3,4,5,6, โฆ โฆ }
2
๐กโ๐๐ ๐ 2๐ฅ
+ ๐(x 2 โ 1) 2 = ๐(x 2 + 1) 2
For all n โN={1,2,3,4,5,6 โฆ โฆ }
2
๐โ๐๐ ๐ฅ = 2, ๐๐๐ ๐ = 1, ๐กโ๐๐ 1 2 โ 2
+ 1โ2
โด 42 + 32 = 52
2
๐โ๐๐ ๐ฅ = 2, ๐๐๐ ๐ = 2, ๐กโ๐๐ 2 2 โ 2
+ 2โ2
โด 82 + 152 = 172
2
๐โ๐๐ ๐ฅ = 2, ๐๐๐ ๐ = 3, ๐กโ๐๐ 3 2 โ 2
+ 3โ2
2
2
โด 12 + 35 = 372
2
๐โ๐๐ ๐ฅ = 2, ๐๐๐ ๐ = 4, ๐กโ๐๐ 4 2 โ 2
+ 4โ2
โด 162 + 632 = 652
2
๐โ๐๐ ๐ฅ = 2, ๐๐๐ ๐ = 5, ๐กโ๐๐ 5 2 โ 2
+ 5โ2
2
โ1
2
=
1โ2
2
+1
2
2
โ1
2
=
2โ2
2
+1
2
2
โ1
2
=
3โ2
2
+1
2
2
โ1
2
=
4โ2
2
+1
2
2
โ1
2
=
5โ2
2
+1
2
1โ4
2
+1
2
โด 202 + 992 = 1012
๐๐๐ ๐ ๐ ๐๐
2
๐โ๐๐ ๐ฅ = 4, ๐๐๐ ๐ = 1, ๐กโ๐๐ 1 2 โ 4
+ 1โ4 2 โ1 2 =
2
2
โด 8 + 15 = 172
2
๐โ๐๐ ๐ฅ = 4, ๐๐๐ ๐ = 2, ๐กโ๐๐ 2 2 โ 4
+ 2( 1 โ 4 2 โ 1) 2 =
2
โด 16 + 302 = 342
2
๐โ๐๐ ๐ฅ = 4, ๐๐๐ ๐ = 3, ๐กโ๐๐ 3 2 โ 4
+ 3( 1 โ 4 2 โ 1) 2 =
โด 242 + 452 = 512
2
๐โ๐๐ ๐ฅ = 4, ๐๐๐ ๐ = 4, ๐กโ๐๐ 4 2 โ 4
+ 4( 1 โ 4 2 โ 1) 2 =
โด 322 + 602 = 682
DOI: 10.9790/5728-11241023
www.iosrjournals.org
2 1โ4
2
+ 1)
2
3 1โ4
2
+ 1)
2
4 1โ4
2
+ 1)
2
21 | Page
Resolution of Birch and Swinnerton โDyre Conjecture, with respect to the solutions of the โฆโฆ
2
๐โ๐๐ ๐ฅ = 4, ๐๐๐ ๐ = 5, ๐กโ๐๐ 5 2 โ 4
+ 5( 1 โ 4 2 โ 1) 2 = 5 1 โ 4 2 + 1)
2
โด 40 + 752 = 852
๐๐๐ ๐ ๐ ๐๐
2
๐โ๐๐ ๐ฅ = 6, ๐๐๐ ๐ = 1, ๐กโ๐๐ 1 2 โ 6
+ 1โ6 2 โ1 2 = 1โ6 2 +1 2
2
โด 122 + 352 = 372
2
๐โ๐๐ ๐ฅ = 6, ๐๐๐ ๐ = 2, ๐กโ๐๐ 2 2 โ 6
+ 2โ6 2 โ1 2 = 2โ6 2 +1 2
2
2
โด 24 + 143 = 1452
2
๐โ๐๐ ๐ฅ = 6, ๐๐๐ ๐ = 3, ๐กโ๐๐ 3 2 โ 6
+ 3โ6 2 โ1 2 = 3โ6 2 +1 2
โด 362 + 3232 = 3252
2
๐โ๐๐ ๐ฅ = 6, ๐๐๐ ๐ = 4, ๐กโ๐๐ 4 2 โ 6
+ 4โ6 2 โ1 2 = 4โ6 2 +1 2
2
2
โด 48 + 575 = 5772
2
๐โ๐๐ ๐ฅ = 6, ๐๐๐ ๐ = 5, ๐กโ๐๐ 5 2 โ 6
+ 5โ6 2 โ1 2 = 5โ6 2 +1 2
2
2
โด 60 + 899 = 9012
๐๐๐ ๐ ๐ ๐๐
๐ซ๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐ ๐๐๐๐ ๐๐๐ + ๐๐๐ + ๐๐๐ + ๐๐๐ + ๐๐๐ + ๐๐ ๐ + โฏ = ๐๐ , ๐๐๐ ๐๐๐ ๐
= ๐, ๐, ๐, ๐, ๐, ๐ โฆ โฆ ๐๐ ๐๐๐๐๐ ๐๐๐๐๐๐๐ ๐๐ ๐๐๐ ๐๐๐๐๐๐๐๐ ๐๐ + ๐๐
= ๐๐ , ๐ฎ๐ฌ๐ข๐ง๐ ๐ญ๐ก๐ ๐๐๐จ๐ฏ๐ ๐๐จ๐ซ๐ฆ๐ฎ๐ฅ๐๐
Examples
Examples-1
32 + 42 = 52
52 + 122 = 132
2
3 + 42 + 122 = 132
132 + 842 = 852
2
3 + 42 + 122 + 842 = 852
852 + 36122 = 36132
2
2
โด 3 + 4 + 122 + 842 + 36122 = 36132
3613๐ + 65268842 = 6526885^2
2
2
โด 3 + 4 + 122 + 842 + 36122 + 65268842 = 65268852
65268852 + 213001139016122 = 213001139016132
2
2
2
โด 3 + 4 + 12 + 842 + 36122 + 65268842 + 213001139016122 = 213001139016132
213001139016132 + 2268474261108436887220008842 = 226847426110843688722000885^2
32 + 42 + 122 + 842 + 36122 + 65268842 + 213001139016122
+ 2.5729877366557343481074291996722๐ + 522
= 2.5729877366557343481074291996722๐ + 522
๐๐๐ ๐ ๐ ๐๐
Example-2
72 + 242 = 252
252 + 3122 = 3132
2
โด 7 + 242 + 3122 = 3132
3132 + 489842 = 489852
2
โด 7 + 242 + 3122 + 489842 = 489852
489852 + 11997651122 = 11997651132
2
2
โด 7 + 24 + 3122 + 489842 + 11997651122 = 11997651132
2
1199765113 + 7197181631859513842 = 7197181631859513852
72 + 242 + 3122 + 489842 + 11997651122 + 7197181631859513842
+ 2.5899711720987987395271016274749e2
+ 373.3539753361514126792100107233405e + 742
= 3.7335397533615141267921001072334e + 7442
๐๐๐ ๐ ๐ ๐๐
62 + 82 = 102
102 + 242 = 262
โด 62 + 82 + 242 = 262
262 + 1682 = 1702
2
โด 6 + 82 + 242 + 1682 = 1702
1702 + 72242 = 72262
DOI: 10.9790/5728-11241023
www.iosrjournals.org
22 | Page
Resolution of Birch and Swinnerton โDyre Conjecture, with respect to the solutions of the โฆโฆ
โด 62 + 82 + 242 + 1682 + 72242 = 72262
72262 + 130537682 = 130537702
2
2
โด 6 + 8 + 242 + 1682 + 72242 + 130537682 = 130537702
And so on.
Acknowledgement
Clay Mathematics Institute of Cambridge Massachusetts (CMT)
Bibliography
[1].
[2].
Principles of mathematical analysis third edition, by Walter Rudin
Millennium prize problems in mathematics, announced and published by Clay Mathematics Institute of Cambridge Massachusetts
(CMT)
DOI: 10.9790/5728-11241023
www.iosrjournals.org
23 | Page