Download IOSR Journal of Mathematics (IOSR-JM)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
IOSR Journal of Mathematics (IOSR-JM)
e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 11, Issue 2 Ver. IV (Mar - Apr. 2015), PP 10-23
www.iosrjournals.org
Resolution of Birch and Swinnerton โ€“Dyre Conjecture, with respect to the
solutions of the equation ๐’™๐Ÿ + ๐’š๐Ÿ = ๐’›๐Ÿ ๐ข๐ง ๐ฐ๐ก๐จ๐ฅ๐ž ๐ง๐ฎ๐ฆ๐›๐ž๐ซ๐ฌ
Mohan Vithu Gaonkar, M.A.; M.Ed.
(New Horizon, PDA Colony, Porvorim, Bardez, Goa, India. 403521)
Abstract: A general method to find complete solution of the equation: ๐’™2 + ๐’š2 = ๐’›2 ๐‘–๐‘› ๐‘คโ„Ž๐‘œ๐‘™๐‘’ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ๐‘ , in the
form of formulae, with proof and resolution of Birch and Swinnerton-Dyre conjecture with respect to the
solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 ๐‘–๐‘› ๐‘คโ„Ž๐‘œ๐‘™๐‘’ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ๐‘ ,.
Content
1
2
3
4
5
6
7
8
9
10
Abstract
Details of Birch and Swinnerton โ€“Dyre conjecture
Introduction and the results
A general method in the form of formulae, to find complete solution of the equation ๐’™2 + ๐’š2 = ๐’›2 in whole
numbers.
Theorem 1: (Non- trivial primitive solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 in whole numbers, when an odd number
xโ‰ฅ 3 ,x โˆˆN={1,2,3,4,5,6, โ€ฆ โ€ฆ })
Theorem 2 :( Non-trivial primitive solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 in whole numbers, when an even number
xโ‰ฅ 4 where x โˆˆN={1,2,3,4,5,6, โ€ฆ โ€ฆ })
Theorem 3 :( Derived solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 in whole numbers, from its non-trivial primitive
solutions when an odd number xโ‰ฅ3, xโˆˆN={1,2,3,4,5,6, โ€ฆ โ€ฆ })
Theorem 4 :( Derived solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 in whole numbers, from its non-trivial primitive
solutions when an even number xโ‰ฅ4, xโˆˆ ๐‘ = {1,2,3,4,5,6, โ€ฆ โ€ฆ } )
Resolution of Birch and Swinnerton โ€“Dyre Conjecture, with respect to the equation ๐’™๐Ÿ + ๐’š๐Ÿ = ๐’›๐Ÿ :
Case-1
Case-2
Case-3
Case-4
Solved examples
Developing chain solutions like n12 + n22 + n23 + n24 + n25 + n2 6 +. . . โ€ฆ
= n2 in whole numbers, of the equation x 2 + y 2 = z2 , formulae
Total pages
1
1
2
3
3
4
5
5
6
7
8
9
13
14
Details of Birch and Swinnerton โ€“Dyre conjecture
Birch and Swinnerton โ€“Dyre conjecture, one of the millennium seven problems established, announced and
published by Clay Mathematics Institute of Cambridge Massachusetts (CMT) is as follows:
Mathematicians have always been fascinated by the problem of all solutions in whole numbers x,y,z to algebraic
equation like ๐’™2 + ๐’š2 = ๐’›2 .
Euclid gave the complete solution for that equation, but for more complicated equations this becomes extremely
difficult. Indeed in 1970 Yu. V. Matiyasevich showed that Hilbertโ€™s tenth problem is unsolvable, i.e. there is no
general method for determining when such equations have a solution in whole numbers. But in special cases one
can hope to say something when the solutions are point of an abelian variety, the Birch and Swinnerton-Dyre
conjecture asserts that the size of the group of rational points is related to the behavior of an associated zeta
function ฮถ(s) is equal to zero, then there are infinite number of rational points (solutions), and conversely, if ฮถ (1)
is not equal to 0, then there is only finite number of such points.
I.
1.
Introduction and the results
Formula for finding Non-trivial primitive solutions of the equation ๐‘ฅ 2 + ๐‘ฆ 2 = ๐‘ง 2 in whole numbers, when
an odd number xโ‰ค 3, x โˆˆN and ๐‘คโ„Ž๐‘’๐‘› ๐‘ฅ = 2๐‘› + 1, ๐‘ฆ =
12+
2๐‘›+12โˆ’122=
2๐‘›+12+122๐‘“๐‘œ๐‘Ÿ
OR
When an odd number x โ‰ฅ 3, x โˆˆN={1,2,3,4,5,6 โ€ฆ โ€ฆ }
๐‘ฅ2 โˆ’ 1
๐‘กโ„Ž๐‘’๐‘› ๐‘ฅ 2 +
2
DOI: 10.9790/5728-11241023
2
(2๐‘›+1)2 โˆ’1
2
๐‘ฅ2 + 1
=
2
, ๐‘Ž๐‘›๐‘‘ ๐‘ง =
๐‘Ž๐‘™๐‘™
2๐‘›+1 2 +1
2
,
๐‘กโ„Ž๐‘’๐‘› 2๐‘› +
๐‘›โˆˆN={1,2,3,4,5,6,โ€ฆโ€ฆ}
2
www.iosrjournals.org
10 | Page
Resolution of Birch and Swinnerton โ€“Dyre Conjecture, with respect to the solutions of the โ€ฆโ€ฆ
2.
Formula for finding non trivial primitive solutions of the equation ๐‘ฅ 2 + ๐‘ฆ 2 = z 2 in whole numbers, when
an even number xโ‰ฅ 4, x โˆˆN={1,2,3,4,5,6 โ€ฆ โ€ฆ } and when x=2n+2, y = ๐‘› + 1 2 โˆ’ 1 , and z = ๐‘› + 1 2 +
1,
๐‘กโ„Ž๐‘’๐‘› 2n + 2 2 + [ n + 1)^2 โˆ’ 1 2 = [ n + 1)^2 + 1 2 ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ n โˆˆ N = {1,2,3,4,5,6, โ€ฆ โ€ฆ }
OR
When an even number x โ‰ฅ 2 โˆˆN then 2๐‘ฅ 2 + x 2 โˆ’ 1 2 = x 2 + 1 2
3. Formula for finding derived solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 from its non โ€“trivial primitive
solutions, in whole numbers, when an odd number xโ‰ฅ 3, n โˆˆN={1,2,3,4,5,6, โ€ฆ โ€ฆ } and x=2n+1,๐‘ฆ =
2๐‘›+1 2 โˆ’1
, ๐‘Ž๐‘›๐‘‘ z =
2
{1,2,3,4,5,6, โ€ฆ โ€ฆ }
2๐‘› +1 2 +1
2
2๐‘›+1 2 โˆ’1
then [(n 2n + 1 ]2 + [n
2
2๐‘›+1 2 +1
]2 = [n
2
]2 ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘› โˆˆ ๐‘ =
OR
๐‘› ๐‘ฅ 2 โˆ’1
2
๐‘› ๐‘ฅ 2 +1
2
When an odd number xโ‰ฅ 3, x โˆˆN={1,2,3,4,5,6 โ€ฆ โ€ฆ }, then ๐‘›๐‘ฅ 2 +
=
2
2
4. Formula for finding derived solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 in whole numbers, from its non-trivial
primitive solutions, when an even number xโ‰ฅ 4, xโˆˆN={1,2,3,4,5,6, โ€ฆ โ€ฆ } and x=2n+2, y= ๐‘› + 1 2 โˆ’ 1,
And z = ๐‘› + 1 2 + 1
2
๐‘กโ„Ž๐‘’๐‘› ๐‘› 2๐‘› + 2
+ ๐‘›((๐‘› + 1 2 โˆ’ 1) 2 = (๐‘› (๐‘› + 1 2 + 1))^2
When an even number xโ‰ฅ4, xโˆˆN={1,2,3,4,5,6, โ€ฆ โ€ฆ }
2
๐‘กโ„Ž๐‘’๐‘› ๐‘› 2๐‘ฅ
+ ๐‘›๐‘ฅ 2 โˆ’ 1 2 = ๐‘›๐‘ฅ 2 + 1 2
For all n โˆˆN={1,2,3,4,5,6 โ€ฆ โ€ฆ }
Theorem 1: (Non- trivial primitive solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 in whole numbers, when an odd
number xโ‰ฅ 3, x โˆˆN={1,2,3,4,5,6 โ€ฆ โ€ฆ })
Let, x = 2n + 1, ๐‘ฆ =
(2๐‘›+1)2 โˆ’1
2
, ๐‘Ž๐‘›๐‘‘ ๐‘ง =
2๐‘›+1 2 +1
2
2
2๐‘› + 1 โˆ’ 1
2
Proof :( Using Mathematical Induction)
Let be P๐‘› the statement
๐‘กโ„Ž๐‘’๐‘› 2๐‘› + 1
2
2+
2๐‘› + 1
=
,
2๐‘› + 1
2
2
2๐‘› + 1
2
2+
โˆ’1
2
2
+1
๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘› โˆˆ N = {1,2,3,4,5,6, โ€ฆ โ€ฆ }
2
2๐‘› + 1
2
=
2
+1
2
Basic step: Show ๐‘ƒ1 is true.
For n=1
The left hand side of ๐‘ƒ1 is 2 โˆ— 1 + 1
The right hand side of ๐‘ƒ1 is
2
2โˆ—1+1 2 +1
2
=
2
3 2 +1
2
10 2
=
2
2
+
2
2โˆ—1+1 2
2
= 32 + 42 = 52
= 52
.. . 32 + 42 = 52
.. . L. H. S = R. H. S.
Induction step:
Let kโ‰ฅ be an integer and assume
๐‘ƒ๐‘˜ is true
That is assume that
2
2๐‘˜ + 1 2 โˆ’ 1
2๐‘˜ + 1
2๐‘˜ + 1 2 +
=
2
2
Required to show is true ๐‘ƒ๐‘˜ +1 i.e. that
2
2(๐‘˜ + 1) + 1 2 โˆ’ 1
2(๐‘˜ + 1) + 1 2 +
=
2
= {1,2,3,4,5,6, โ€ฆ โ€ฆ }
2
+1
2
๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘˜ โˆˆ N = {1,2,3,4,5,6, โ€ฆ โ€ฆ }
2(๐‘˜ + 1) + 1
2
2
+1
2
๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ (๐‘˜ + 1) โˆˆ N
2
2(๐‘˜ +1)+1 2 โˆ’1
L.H.S= 2(๐‘˜ + 1) + 1 2 +
2
Consider
2(๐‘˜ + 1) + 1 2 = 2k + 2 + 1 = 2k + 3
Consider
DOI: 10.9790/5728-11241023
2
= 4k 2 + 12k + 9
www.iosrjournals.org
(1)
11 | Page
Resolution of Birch and Swinnerton โ€“Dyre Conjecture, with respect to the solutions of the โ€ฆโ€ฆ
2
2(๐‘˜+1)+1 2 โˆ’1
2
=
2
(2๐‘˜ +3) 2 โˆ’1
2
=
4๐‘˜ 2 +12๐‘˜+8
2
16๐‘˜2=4๐‘˜4+12๐‘˜3+52๐‘˜2+16++48๐‘˜+16
2
= 2๐‘˜ 2 + 6๐‘˜ + 4 2 = 4๐‘˜ 4 + 36๐‘˜ 2 + 16 + 12๐‘˜ 3 + 48๐‘˜ +
(2)
From (1) & (2)
L.H.S. = 4๐‘˜ 4 + 12๐‘˜ 3 + 56๐‘˜ 2 + 60๐‘˜ + 25
R.H.S. =
2
2(๐‘˜ +1)+1 2 +1
2
2 2
2๐‘˜ +3 2 +1
=
2
=
(3)
2
4๐‘˜ 2 +12๐‘˜+10
2
= 2๐‘˜ 2 + 6๐‘˜ + 5
2
=4๐‘˜ 4 + 24๐‘˜ 3 + 56๐‘˜ 2 + 60๐‘˜ + 25
(4)
From (3) & (4) we have
L.H.S. =R.H.S.
Hence ๐‘ƒ๐‘˜+1 is true is ๐‘ƒ๐‘˜ is true
By principle of mathematical induction ๐‘ƒ๐‘› is true for all nโˆˆN={1,2,3,4,5,6, โ€ฆ โ€ฆ } Hence the proof. QED.
Theorem 2: (Non-trivial primitive solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 in whole numbers, when an even
number xโ‰ฅ 4 where x โˆˆN={1,2,3,4,5,6, โ€ฆ โ€ฆ })
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 2๐‘› + 2, ๐‘ฆ = ๐‘› + 1 2 โˆ’ 1, ๐‘Ž๐‘›๐‘‘ ๐‘ง = ๐‘› + 1 2 + 1
๐‘กโ„Ž๐‘’๐‘› 2๐‘› + 2 2 + ๐‘› + 1 2 โˆ’ 1 2 = ๐‘› + 1 2 + 1 2
for all n โˆˆ N =
{1,2,3,4,5,6 โ€ฆ โ€ฆ }
Proof: (Using Mathematical Induction)
Let ๐‘ƒ๐‘› be the statement
2๐‘› + 2 2 + ๐‘› + 1 2 โˆ’ 1 2 = ๐‘› + 1 2 + 1 2
Basic step: Show ๐‘ƒ1 is true
For n=1
L.H.S. = 2 โˆ— 1 + 2 2 + 1 + 1 2 โˆ’ 1 2 = 32 + 42 = 52
(1)
R.H.S.
=
1 + 1 2 + 1 2 = 52
(2)
From (1) & (2) we have
L.H.S. =R.H.S.
Induction step:
Let kโ‰ฅ 1 be an integer and assume
๐‘ƒ๐‘˜ is true. That is, assume that
2๐‘˜ + 2 2 + ๐‘˜ + 1 2 โˆ’ 1 2 = ๐‘˜ + 1 2 + 1 2
Required to show ๐‘ƒ๐‘˜ +1 is true i.e. that
2(๐‘˜ + 1) + 2 2 + (๐‘˜ + 1) + 1 2 โˆ’ 1 2 = (๐‘˜ + 1) + 1 2 + 1 2
L.H.S. = 2(๐‘˜ + 1) + 2 2 + (๐‘˜ + 1) + 1 2 โˆ’ 1 2
Consider
2
2(๐‘˜ + 1) + 2 2 = 2๐‘˜ + 2 + 2 = 4๐‘˜ 2 + 16๐‘˜ + 16
(3)
Consider
๐‘˜ + 1) + 1 2 โˆ’ 1 2 = (๐‘˜ + 2) โˆ’ 1 2 = ( ๐‘˜ 2 + 4๐‘˜ + 3 2 = ๐‘˜ 4 + 8๐‘˜ 3 + 22๐‘˜ 2 + 24๐‘˜ + 9
(4)
From (3) & (4) we have
L.H.S.
=
๐‘˜ 4 + 8๐‘˜ 3 + 26๐‘˜ 2 + 40๐‘˜ + 25
(5)
2
2
2
2
R.H.S.
=
๐‘˜+1 +1 +1 =
๐‘˜+2
+ 1 = ๐‘˜ 2 + 4๐‘˜ + 4 + 1 2 = ๐‘˜ 4 + 8๐‘˜ 3 + 26๐‘˜ 2 + 40๐‘˜ +
25
(6)
From (5) & (6) we have
L.H.S. =R.H.S.
Hence ๐‘ƒ๐‘˜ +1 are true if is ๐‘ƒ๐‘˜ true. By the principle of Mathematical Induction Pn is true for all nโˆˆ ๐‘ =
1,2,3,4,5,6, โ€ฆ โ€ฆ . Hence the proof.
QED.
Theorem 3: (Derived solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 in whole numbers, from its non-trivial primitive
solutions when an odd number xโ‰ฅ3, xโˆˆN={1,2,3,4,5,6, โ€ฆ โ€ฆ })
When x=2n+1,๐‘ฆ =
2๐‘›+1 2 โˆ’1
2
, and ๐‘ง =
2๐‘›+1 2 +1
2
2
2๐‘› + 1 โˆ’ 1
๐‘กโ„Ž๐‘’๐‘› (n 2n + 1) + ๐‘›
2
= {1,2,3,4,5,6 โ€ฆ โ€ฆ }
Proof: (Using Mathematical Induction)
Let ๐‘ƒ๐‘› be statement
2
DOI: 10.9790/5728-11241023
2
= ๐‘›
2๐‘› + 1
2
2
+1
www.iosrjournals.org
2
for all n โˆˆ N
12 | Page
Resolution of Birch and Swinnerton โ€“Dyre Conjecture, with respect to the solutions of the โ€ฆโ€ฆ
2
(n 2n + 1)
+
2๐‘› + 1
2
๐‘›
2
2
โˆ’1
= ๐‘›
2๐‘› + 1
2
2
2
+1
Basic step: Show ๐‘ƒ1 is true.
For n=1
L.H.S. = (1 2 โˆ— 1 + 1)
R.H.S. = 1
2
2โˆ—1+1 2 +1
+ 1
= 32 + 42 = 52
2
2
(1)
2
10
= 1
2
2
2โˆ—1+1 2 โˆ’1
= 52
2
(2)
โˆด ๐ฟ. ๐ป. ๐‘†. = ๐‘…. ๐ป. ๐‘†.
Induction step:
Let kโ‰ฅ1 be an integer and assume ๐‘ƒ๐‘˜ true, that is, assume that
2
(k 2k + 1)
Required
to
((k + 1) 2(k + 1) + 1)
2
+
2 ๐‘˜ +1 +1 2 โˆ’1
๐‘˜+1
2
2
2
(๐‘˜ + 1)
2
โˆ— 2k + 3
= k+1
is
2(๐‘˜ +1)+1 2 โˆ’1
2
2๐‘˜ + 1 2 + 1
2
true
= (๐‘˜ + 1)
2
+
= ๐‘˜
2
2(๐‘˜+1)+1 2 โˆ’1
(๐‘˜ + 1)
2
2๐‘˜ + 1 2 โˆ’ 1
2
Pk+1
๐‘˜
show
L.H.S. = ((k + 1) 2(k + 1) + 1)
Consider
( k + 1 2(k + 1) + 1)
30k + 9
Consider
+
2(๐‘˜ +1)+1 2 +1
i.e.
2
2
2
2
= k 2 + 2k + 1 4k 2 + 12k + 9 = 4k 4 + 20k 3 + 37k 2 +
(3)
2
=( k+1
2
โˆ— 2k 2 + 6k + 4
2
= (k 2 + 2k + 1)(4k 4 + 36k 2 + 16 + 24k 3 +
48k + 16k 2 = 4k 6 + 32k 5 + 104k 4 + 176k^3 + 164k 2 + 80k + 16
From (3) and (4) we have
L.H.S. = 4k 6 + 32k 5 + 108k^4 + 196k^3 + 201k 2 + 110k + 25
R.H.S.
=
(๐‘˜ + 1)
that
2
2(๐‘˜+1)+1 2 +1
(4)
(5)
2
2
= k+1
2
โˆ— 2k 2 + 6k + 5
2
= 4k 6 + 32k 5 + 108k 4 + 196k 3 +
201k 2 + 110k + 25
(6)
From (5) & (6) we have
L.H.S.=R.H.S.
Hence ๐‘ƒ๐‘˜ +1 are true if ๐‘ƒ๐‘˜ is true. By the principle of Mathematical Induction ๐‘ƒ๐‘˜ is true for all n
โˆˆN={1,2,3,4,5,6, โ€ฆ โ€ฆ } Hence the proof.
QED
Theorem 4 :( Derived solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 in whole numbers, from its non-trivial primitive
solutions when an even number xโ‰ฅ4, xโˆˆ ๐‘ = {1,2,3,4,5,6, โ€ฆ โ€ฆ })
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 2๐‘› + 2, ๐‘ฆ = ๐‘› + 1 2 โˆ’ 1, ๐‘Ž๐‘›๐‘‘ ๐‘ง = ๐‘› + 1 2 ,
2
2
๐‘กโ„Ž๐‘’๐‘› ๐‘› 2๐‘› + 2) 2 + ๐‘›( ๐‘› + 1 2 โˆ’ 1
= ๐‘› ๐‘›+1 2 +1
๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘› โˆˆ ๐‘
Proof :( Using Mathematical Induction)
Let ๐‘ƒ๐‘› be the statement
2
2
๐‘› 2๐‘› + 2) 2 + ๐‘›( ๐‘› + 1 2 โˆ’ 1
= ๐‘› ๐‘›+1 2 +1
Basic step: Show ๐‘ƒ1 is true.
For n=1
L.H.S
=
2
2
2
๐‘› 2๐‘› + 2) 2 + ๐‘›( ๐‘› + 1 2 โˆ’ 1
= 1 2โˆ—1+2
+ 1 1+1 2โˆ’1
= 42 + 32 = 52
(1}
2
R.H.S. = ๐‘› ๐‘› + 1 2 + 1
= (1 1 + 1
โˆด L.H.S. =R.H.S.
Induction step:
Let
kโ‰ฅ1
be
an
integer
DOI: 10.9790/5728-11241023
2
+1
and
2
= 52
assume
(2)
๐‘ƒ๐‘˜
www.iosrjournals.org
is
true
that
is
that
13 | Page
Resolution of Birch and Swinnerton โ€“Dyre Conjecture, with respect to the solutions of the โ€ฆโ€ฆ
2
2
๐‘˜ 2๐‘˜ + 2) 2 + ๐‘˜( ๐‘˜ + 1 2 โˆ’ 1
= ๐‘˜ ๐‘˜+1 2 +1
Required
to
show
is
๐‘ƒ๐‘˜ +1 true
i.e.
2
2
2
(๐‘˜+1) 2(๐‘˜ + 1) + 2) + (๐‘˜ + 1)( (๐‘˜ + 1) + 1 โˆ’ 1
= (๐‘˜ + 1) (๐‘˜ + 1) + 1 2 + 1
that
2
2
L.H.S. = (๐‘˜+1) 2(๐‘˜ + 1) + 2) 2 + (๐‘˜ + 1)( (๐‘˜ + 1) + 1 2 โˆ’ 1
Consider
((๐‘˜+1) 2(๐‘˜ + 1) + 2) 2 = ๐‘˜ + 1 2 โˆ— 2๐‘˜ + 4 2 = ๐‘˜ 2 + 2๐‘˜ + 1 4๐‘˜ 2 + 16๐‘˜ + 16 = 4๐‘˜ 4 + 24๐‘˜ 3 +
52๐‘˜ 2 + 16๐‘˜ + 16
(3)
Consider
(๐‘˜ + 1) ( ๐‘˜ + 1 + 1 2 โˆ’ 1 2 = ๐‘˜ + 1 2 โˆ— ๐‘˜ 2 + 4๐‘˜ + 3 2 = ๐‘˜ 2 + 2๐‘˜ + 1 โˆ— (๐‘˜ 4 + 16๐‘˜ 2 + 9 + 8๐‘˜ 3 +
24๐‘˜ + 6๐‘˜ 2 = ๐‘˜ 6 + 8๐‘˜ 5 + 39๐‘˜ 4 + 76๐‘˜ 3 + 79๐‘˜ 2 + 42๐‘˜ + 9
(4)
Adding (3) & (4) we have
๐ฟ. ๐ป. ๐‘†. = ๐‘˜ 6 + 10๐‘˜ 5 + 43๐‘˜ 4 + 100๐‘˜ 3 + 131๐‘˜ 2 + 90๐‘˜ + 25
(5)
(๐‘˜ + 1) (๐‘˜ + 1) + 1
=
2
2
โˆ— ๐‘˜ 2 + 4๐‘˜ + 5 2 = ๐‘˜ 2 + 2๐‘˜ + 1 โˆ— ๐‘˜ 4 + 8๐‘˜ 3 +
26๐‘˜2+40๐‘˜+25=๐‘˜6+10๐‘˜5+43๐‘˜4+100๐‘˜3+131๐‘˜2+90๐‘˜+25
(6)
From (5) & (6) we have
L.H.S= R.H.S.
Hence ๐‘ƒ๐‘˜ +1 are true. By the principle of Mathematical Induction ๐‘ƒ๐‘› is true for all n โˆˆN={1,2,3,4,5,6, โ€ฆ โ€ฆ }
Hence the proof.
QED.
Resolution of Birch and Swinnerton โ€“Dyre Conjecture, with respect to the equation ๐’™๐Ÿ + ๐’š๐Ÿ = ๐’›๐Ÿ
Birch and Swinnerton โ€“Dyre conjecture
When the solutions are points of an abelian variety the conjecture asserts that the size of the group of rational
points is related to the behavior of an associated zeta function ๐œ(๐‘ ) near the point s=1.
In particular this amazing conjecture asserts that if ฮถ(s) is equal to 0, then there are an infinite number of rational
points(solutions), and conversely, if ฮถ(1) is not equal to 0, then there is only a finite number of such points.
Case-1
(When non-trivial primitive solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 in whole numbers and an odd number xโ‰ฅ
3, x โˆˆN={1,2,3,4,5,6, โ€ฆ โ€ฆ })
(2๐‘› + 1)2 โˆ’ 1
2๐‘› + 1 2 + 1
๐‘คโ„Ž๐‘’๐‘› ๐‘ฅ = 2๐‘› + 1, ๐‘ฆ =
, ๐‘Ž๐‘›๐‘‘ ๐‘ง =
,
2
2
2
2
2
2
2๐‘› + 1 โˆ’ 1
2๐‘› + 1 + 1
๐‘กโ„Ž๐‘’๐‘› 2๐‘› + 1 2 +
=
๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘› โˆˆ N
2
2
R.H.S.
+1
=( ๐‘˜+1
2
Consider the equation
2๐‘› + 1 2 +
2
2
2๐‘› +1 2 โˆ’1
2
2๐‘› +1 2 +1
=
2
2
2๐‘› +1 2 โˆ’1
2
2
2๐‘›+1 2 +1
โˆด 2๐‘› + 1 +
โˆ’
=0
2
2
Using this weight value a series can be developed such that each term of series converges to 0 having one-to-one
correspondence between the weight value of the term and the solution of the equation ๐’™2 + ๐’š2 = ๐’›2 where
each term represents one and only one districts solution of the equation. i.e.
โˆž
๐‘›=1 ๐‘Žn =
โˆž
๐‘›=1
2๐‘› + 1
2
2
2๐‘›+1 2 โˆ’1
+
2
โˆ’
2
2๐‘› +1 2 +1
2
=0 + 0 + 0 + 0 + 0 + o + โ‹ฏ
1
1
1
Associating this with ฮถ(1) where Riemann zeta function ฮถ(1)=1 + 2 + 3 + 4 + โ‹ฏ
2๐‘› +1 2 +
๐‘Ž๐‘›
ฮถ(1)=
0
0
1
2
โˆž
โˆž
๐‘›=1 n = ๐‘›=1
0
0
0
0
2
2๐‘› +1 2 โˆ’1
โˆ’
2
2
2๐‘› +1 2 +1
2
๐‘›
= + + + + + +โ‹ฏ
3
4
5
6
2๐‘›+1 2 +
Partial sum of the nth term =
0
2
2๐‘› +1 2 โˆ’1
โˆ’
2
๐‘›
2
2๐‘› +1 2 +1
2
=
(4๐‘› 4 +8๐‘› 3 +8๐‘› 2 +4๐‘›+1 โˆ’ 4๐‘› 4 +8๐‘› 3 +8๐‘› 2 +4๐‘›+1
๐‘›
=
0
๐‘›
lim๐‘›โ†’โˆž ๐‘› =0=ฮถ (1)
โˆด ฮถ(1)=0 Hence the series is a trivial infinite series of which each term has one-to one correspondence with the
distinct non-trivial primitive solution of the equation ๐’™2 + ๐’š2 = ๐’›2 . โˆด It proves that there are infinite distinct
non-trivial primitive solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 , in whole numbers when an odd number xโ‰ฅ 3 ,
x โˆˆN={1,2,3,4,5,6, โ€ฆ โ€ฆ })
Conversely if ฮถ (1)โ‰  0
DOI: 10.9790/5728-11241023
www.iosrjournals.org
14 | Page
Resolution of Birch and Swinnerton โ€“Dyre Conjecture, with respect to the solutions of the โ€ฆโ€ฆ
Suppose ฮถ (1)โ‰  0
2๐‘›+1 2 +
Hence
2
2๐‘› +1 2 โˆ’1
โˆ’
2
2
2๐‘› +1 2 +1
2
โ‰ 0
๐‘›
โˆด
2๐‘› + 1
where nโ‰  0
2๐‘› + 1
2
2+
2
2
โˆ’1
2
2๐‘› + 1
2
โˆ’
+1
2
โ‰ 0
2
2
2๐‘› + 1 2 โˆ’ 1
2๐‘› + 1 2 + 1
โˆด 2๐‘› + 1 +
โ‰ 
2
2
A contradiction to the formula, for finding non -trivial primitive solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 in
whole
numbers,
when
an
odd
number
xโ‰ฅ 3,
x โˆˆN,
i.e.
(2๐‘› + 1)2 โˆ’ 1
2๐‘› + 1 2 + 1
๐‘คโ„Ž๐‘’๐‘› ๐‘ฅ = 2๐‘› + 1, ๐‘ฆ =
, ๐‘Ž๐‘›๐‘‘ ๐‘ง =
,
2
2
2
2
2๐‘› + 1 2 โˆ’ 1
2๐‘› + 1 2 + 1
๐‘กโ„Ž๐‘’๐‘› 2๐‘› + 1 2+
=
๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘› โˆˆ N
2
2
2
And to our developed series:
โˆž
๐‘›=1 ๐‘Ž๐‘› =
โˆž
๐‘›=1
2๐‘› + 1
2
2๐‘› +1 2 โˆ’1
2+
2
โˆ’
2
2๐‘›+1 2 +1
2
=0 + 0 + 0 + 0 + 0 +
o+โ‹ฏ
So at the most, we can say that if ฮถ (1)โ‰  0 then there is a finite number of solutions, if we consider 0 solutions
as finite.
Hence, the Birch and Swinnerton-Dyre conjecture holds true for case 1.
QED
Case 2: (When non-trivial primitive solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 in whole numbers and an odd
number xโ‰ฅ 3, xโˆˆN={1,2,3,4,5,6, โ€ฆ โ€ฆ })
Consider the formula
When ๐‘ฅ = 2๐‘› + 2, y = n + 1 2 โˆ’ 1, and z = n + 1 2 + 1
then 2n + 2 2 + n + 1 2 โˆ’ 1 2 = n + 1 2 + 1 2 for all n โˆˆ N
Take
2n + 2 2 + n + 1 2 โˆ’ 1 2 = n + 1 2 + 1 2
โˆด
2n + 2 2 + n + 1 2 โˆ’ 1 2 โˆ’ n + 1 2 + 1 2 = ๐ŸŽ
L. H. S = 2n + 2 2 +
8n2 + 8n + 4 = 0
n+1
2
โˆ’1
2
โˆ’
n+1
2
+1
2
= n4 + 4n3 + 8n2 + 8n + 4 โˆ’ (n4 + 4n3 +
โˆด L. H. S. = R. H. S
โˆด
2n + 2 2 + n + 1 2 โˆ’ 1 2 โˆ’ n + 1 2 + 1 2 = ๐ŸŽ
(1)
Using this weight value a series can be developed such that each term of series converges to 0 having one-to-one
correspondence between the weight value of the term and each solution of the equation ๐’™2 + ๐’š2 = ๐’›2 where
each term represents one and only one district solution of the equation. i.e.
โˆž
โˆž
2
+ ๐‘›+1 2 โˆ’1 2 โˆ’ ๐‘›+1 2 +1 2 = 0+0+0+0+โ‹ฏ
๐‘›=1 ๐‘Ž๐‘› = ๐‘›=1 2๐‘› + 2
1
1
1
Associating ๐œ(1) with โˆž
๐‘›=1 ๐‘Žn ), where Riemann zeta function ฮถ(1)=1 + 2 + 3 + 4 + โ‹ฏ
We get
2
2
2๐‘› +2 2 + ๐‘› +1 2 โˆ’1
โˆ’ ๐‘›+1 2 +1
๐‘Ž
๐‘›
โˆž
ฮถ(1)= โˆž
๐‘›=1 n = ๐‘›=1
Partial sum of ๐’๐‘กโ„Ž terms
=
2
2
2๐‘›+2 2 + ๐‘›+1 2 โˆ’1
โˆ’ ๐‘›+1 2 +1
0
๐‘›
๐‘›
=
0
0
0
0
0
=1+2+3+4+5+โ‹ฏ
n 4 +4n 3 +8n 2 +8n+4 โˆ’(n 4 +4n 3 +8n 2 +8n+4 0
๐‘›
=๐‘›
lim๐‘›โ†’โˆž = 0=๐œ(1)
๐‘›
โˆด
๐œ 1 =0
1. Hence the series is a trivial infinite series of which each term has one-to one correspondence with the
distinct non-trivial primitive solution of the equation ๐’™2 + ๐’š2 = ๐’›2 . โˆด It proves that there are infinite
distinct non-trivial primitive solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 , in whole numbers when an even
number xโ‰ฅ 4 , xโˆˆN= {1,2,3,4,5,6, โ€ฆ โ€ฆ })
Conversely if ฮถ (1)โ‰  0
Suppose ฮถ (1)โ‰  0
๐ป๐‘’๐‘›๐‘๐‘’
2
2
2๐‘› +2 2 + ๐‘› +1 2 โˆ’1
โˆ’ ๐‘› +1 2 +1
๐‘›
DOI: 10.9790/5728-11241023
โ‰ 0
Where nโ‰  0
www.iosrjournals.org
15 | Page
Resolution of Birch and Swinnerton โ€“Dyre Conjecture, with respect to the solutions of the โ€ฆโ€ฆ
2๐‘› + 2 2 + ๐‘› + 1 2 โˆ’ 1 2 โˆ’ ๐‘› + 1 2 + 1 2 โ‰  0
โˆด 2๐‘› + 2 2 + ๐‘› + 1 2 โˆ’ 1 2 โ‰  ๐‘› + 1 2 + 1 2
2. A contradiction to the formula, for finding, non-trivial primitive solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 in
whole numbers, when an even number xโ‰ฅ 4, x โˆˆN= {1,2,3,4,5,6, โ€ฆ โ€ฆ }, i.e.
When ๐‘ฅ = 2๐‘› + 2, y = n + 1 2 โˆ’ 1, and z = n + 1 2 + 1
then 2n + 2 2 + n + 1 2 โˆ’ 1 2 = n + 1 2 + 1 2 for all n โˆˆ N = {1,2,3,4,5,6, โ€ฆ โ€ฆ }
and to our developed series i.e.
โˆž
โˆž
2
+ ๐‘›+1 2 โˆ’1 2 โˆ’ ๐‘›+1 2 +1 2 = 0+0+0+0+โ‹ฏ
๐‘›=1 ๐‘Žn= ๐‘›=1 2๐‘› + 2
So at the most, we can say that if ฮถ (1)โ‰  0 then there is a finite number of solutions, if we consider 0 solutions
as finite.
Hence, the Birch and Swinnerton-Dyre conjecture holds true for case 2.
โˆด
QED
Case 3:
When derived solutions of the equation ๐‘ฅ 2 + ๐‘ฆ 2 = z 2 in whole numbers, from its non-trivial primitive
solutions, when an odd number xโ‰ฅ 3 , xโˆˆ ๐‘ = {1,2,3,4,5,6, โ€ฆ โ€ฆ }.
Consider the formula
(2๐‘› + 1)2 โˆ’ 1
2๐‘› + 1 2 + 1
, ๐‘Ž๐‘›๐‘‘ ๐‘ง =
,
2
2
2
2
2๐‘› + 1 2 โˆ’ 1
2๐‘› + 1 2 + 1
= ๐‘›
๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘› โˆˆ N = {1,2,3,4,5,6 โ€ฆ โ€ฆ }
2
2
๐‘คโ„Ž๐‘’๐‘› ๐‘ฅ = 2๐‘› + 1, ๐‘ฆ =
๐‘กโ„Ž๐‘’๐‘› ๐‘›(2๐‘› + 1 )2+ ๐‘›
Consider
2+
๐‘›(2๐‘› + 1 )
2+
โˆด
๐‘›(2๐‘› + 1 )
L.H.S= ๐‘›(2๐‘› + 1 )2+ ๐‘›
2๐‘› + 1
2
๐‘›
2
2๐‘›+1 2 โˆ’1
2
โˆ’1
2๐‘› + 1
2
= ๐‘›
2
โˆ’1
2๐‘› + 1
2
โˆ’ ๐‘›
2
2
2
+1
2
+1
=0
2
2๐‘› +1 2 +1
โˆ’ ๐‘›
2
2
2๐‘› + 1
2
๐‘›
2
= 4๐‘›6 + 8๐‘›5 + 8๐‘›4 + 4๐‘›3 + ๐‘›2 โˆ’
2
4๐‘›6 + 8๐‘›5 + 8๐‘›4 + 4๐‘›3 + ๐‘›2 = 0
โˆด ๐ฟ. ๐ป. ๐‘† = ๐‘…. ๐ป. ๐‘†
2+
โˆด
๐‘›(2๐‘› + 1 )
2
2๐‘› + 1
2
๐‘›
2
โˆ’1
2๐‘› + 1
2
โˆ’ ๐‘›
2
2
+1
=0
โˆด Using this weight value a series can be developed such that each term of series converges to 0 having one-toone correspondence between the weight value of the term and the solution of the equation ๐’™2 + ๐’š2 = ๐’›2 where
each term represents one and only one districts solution of the equation. i.e.
โˆž
๐‘›=1 ๐‘Ž๐‘› =
โˆž
๐‘›=1
๐‘› 2๐‘› + 1
2
+ ๐‘›
2๐‘›+1 2 โˆ’1
2
2
2
2๐‘› +1 2 +1
โˆ’ ๐‘›
=0 + 0 + 0 + 0 + 0 + o + โ‹ฏ
2
1
1
1
0
0
0
Associating this with ฮถ(1) where Riemann zeta function ฮถ(1)=1 + 2 + 3 + 4 + โ‹ฏ
๐‘› 2๐‘›+1
ฮถ(1)=
โˆž ๐‘Ž๐‘›
๐‘›=1 n
=
2+
๐‘› 2๐‘› +1
2
โˆž
๐‘›=1
Partial
2
โˆ’1
๐‘› 2๐‘›+1
0
+ ๐‘›
2๐‘› +1 2 โˆ’1
2
2
2๐‘› +1 2 +1)
โˆ’ ๐‘›(
2
๐‘›
โˆ’
๐‘› 2๐‘› +1
2
2
+1
2
0
0
0
=1 + 2 + 3 + 4 + 5 + 6 + โ‹ฏ
๐‘›
sum
2
2
of
the nth
term
=
2
=
(4๐‘› 6 +8๐‘› 5 +8๐‘› 4 +4๐‘› 3 +๐‘› 2 โˆ’ 4๐‘› 6 +8๐‘› 5 +8๐‘› 4 +4๐‘› 3 +๐‘› 2
๐‘›
0
=๐‘›
lim๐‘›โ†’โˆž ๐‘› =0=ฮถ (1)
โˆด ฮถ(1)=0 Hence the series is a trivial infinite series of which each term has one-to one correspondence with the
distinct non-trivial primitive solution of the equation ๐’™2 + ๐’š2 = ๐’›2 . โˆด It proves that there are infinite derived
DOI: 10.9790/5728-11241023
www.iosrjournals.org
16 | Page
Resolution of Birch and Swinnerton โ€“Dyre Conjecture, with respect to the solutions of the โ€ฆโ€ฆ
solutions from each of distinct non-trivial primitive solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 , in whole numbers
when an odd number xโ‰ฅ 3 , x โˆˆN= {1,2,3,4,5,6, โ€ฆ โ€ฆ })
Conversely if ฮถ (1)โ‰  0
Suppose ฮถ (1)โ‰  0
Hence
2
๐‘› 2๐‘›+1
+ ๐‘›
2
2๐‘› +1 2 โˆ’1
2
2
2๐‘› +1 2 +1)
2
โˆ’ ๐‘›(
๐‘›
โˆด ๐‘› 2๐‘› + 1
2
โ‰ 0
Where nโ‰  0
2๐‘› + 1
2
+ ๐‘›
2
โˆ’1
2
2๐‘› + 1
2
โˆ’ ๐‘›(
2
+ 1)
2
โ‰ 0
2
2
2๐‘› + 1 2 โˆ’ 1
2๐‘› + 1 2 + 1)
โˆด ๐‘› 2๐‘› + 1 + ๐‘›
โ‰  ๐‘›(
)
2
2
A contradiction to the formula, for finding derived solutions of the equation ๐‘ฅ 2 + ๐‘ฆ 2 = z 2 in whole numbers,
from its non-trivial primitive solutions, when an odd number xโ‰ฅ 3 , xโˆˆ ๐‘. i. e.
(2๐‘› + 1)2 โˆ’ 1
2๐‘› + 1 2 + 1
๐‘คโ„Ž๐‘’๐‘› ๐‘ฅ = 2๐‘› + 1, ๐‘ฆ =
, ๐‘Ž๐‘›๐‘‘ ๐‘ง =
,
2
2
2
2
2๐‘› + 1 2 โˆ’ 1
2๐‘› + 1 2 + 1
๐‘กโ„Ž๐‘’๐‘› ๐‘›(2๐‘› + 1 )2+ ๐‘›
= ๐‘›
๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘› โˆˆ N = {1,2,3,4,5,6, โ€ฆ โ€ฆ }
2
2
and to our developed series i.e.
2
โˆž
๐‘›=1 ๐‘Ž๐‘› =
โˆž
๐‘›=1
๐‘› 2๐‘› + 1
2
+ ๐‘›
2๐‘›+1 2 โˆ’1
2
2
โˆ’ ๐‘›
2
2๐‘› +1 2 +1
=0 + 0 + 0 + 0 + 0 + o + โ‹ฏ
2
So at the most, we can say that if ฮถ (1)โ‰  0 then there is a finite number of solutions, if we consider 0 solutions
as finite.
Hence, the Birch and Swinnerton-Dyre conjecture holds true for case 3.
Case 4: (When derived solutions from non-trivial primitive solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 in whole
numbers when an odd number xโ‰ฅ 3, xโˆˆN={1,2,3,4,5,6, โ€ฆ โ€ฆ })
Consider the formula
When ๐‘ฅ = ๐‘› 2๐‘› + 2 , y = (n n + 1) 2 โˆ’ 1, and z = (n n + 1) 2 + 1
then(n 2n + 2) 2 + (n n + 1 2 โˆ’ 1) 2 = (n n + 1 2 + 1) 2 for all n โˆˆ N = {1,2,3,4,5,6 โ€ฆ โ€ฆ }
Take
n(2n + 2) 2 + (n n + 1 2 โˆ’ 1) 2 = (n n + 1 2 + 1) 2
โˆด
(n 2n + 2) 2 + (n n + 1 2 โˆ’ 1) 2 โˆ’ (n n + 1 2 + 1) 2 = ๐ŸŽ
L. H. S = (n 2n + 2) 2 + (n n + 1 2 โˆ’ 1) 2 โˆ’ (n n + 1 2 + 1) 2 = n6 + 4n5 + 8n4 + 8n3 + 4n2 โˆ’
(n6 + 4n5 + 8n4 + 8n^3 + 4n^2 = 0
โˆด L. H. S. = R. H. S
โˆด
(n 2n + 2) 2 + (n n + 1 2 โˆ’ 1) 2 โˆ’ (n n + 1 2 + 1) 2 = ๐ŸŽ
(1)
Using this weight value a series can is developed such that each term of series converges to 0 having one-to-one
correspondence between the weight value of the term and each solution of the equation ๐’™2 + ๐’š2 = ๐’›2 where
each term represents one and only one district solution of the equation. i. e.
2
2
โˆž
โˆž
๐‘› 2๐‘› + 2
+ ๐‘› ๐‘›+1 2 โˆ’1
โˆ’ (๐‘› ๐‘› + 1 2 + 1) 2 = 0 + 0 + 0 + 0 + โ‹ฏ
๐‘›=1 ๐‘Ž๐‘› = ๐‘›=1
โˆž
๐‘›=1 ๐‘Žn
Associating ๐œ(1) with
We get
โˆž ๐‘Ž๐‘›
๐‘›=1 n
โˆž
๐‘›=1
2
2
(๐‘› 2๐‘›+2) 2 +(๐‘› ๐‘› +1 2 โˆ’1)
โˆ’(๐‘› ๐‘›+1 2 +1)
ฮถ(1)=
=
Partial sum of ๐’๐‘กโ„Ž term
=
2
2
(๐‘› 2๐‘› +2) 2 +(๐‘› ๐‘› +1 2 โˆ’1)
โˆ’(๐‘› ๐‘› +1 2 +1)
0
๐‘›
1
1
1
2
3
4
), where Riemann zeta function ฮถ(1)=1 + + + + โ‹ฏ
๐‘›
=
0
0
0
0
0
1
2
3
4
5
= + + + + +โ‹ฏ
n 6 +4n 5 +8n 4 +8n 3 +42 โˆ’(n 6 +4n 5 +8n 4 +8nn 3 +4n 2 0
๐‘›
=๐‘›
lim๐‘›โ†’โˆž = 0=๐œ(1)
๐‘›
โˆด
๐œ 1 =0
DOI: 10.9790/5728-11241023
www.iosrjournals.org
17 | Page
Resolution of Birch and Swinnerton โ€“Dyre Conjecture, with respect to the solutions of the โ€ฆโ€ฆ
Hence the series is a trivial infinite series of which each term has one-to one correspondence with the distinct
derived solutions from non-trivial primitive solution of the equation ๐’™2 + ๐’š2 = ๐’›2 . โˆด It proves that there are
infinite distinct derived solutions from non-trivial primitive solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 , in whole
numbers when an even number xโ‰ฅ 4 , xโˆˆN={1,2,3,4,5,6, โ€ฆ โ€ฆ })
Conversely if ฮถ (1)โ‰  0
Suppose ฮถ (1)โ‰  0
Hence
2
2
(๐‘› 2๐‘› +2) 2 +(๐‘› ๐‘›+1 2 โˆ’1) โˆ’(๐‘› ๐‘› +1 2 +1)
โ‰  0 , ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘› โ‰  0
โˆด (n 2n + 2) + (n n + 1 2 โˆ’ 1) 2 โˆ’ (n n + 1 2 + 1) 2 โ‰  0
โˆด (n 2n + 2) 2 + (n n + 1 2 โˆ’ 1) 2 โ‰  (n n + 1 2 + 1) 2
A contradiction to the formula, for finding derived solutions of the equation ๐‘ฅ 2 + ๐‘ฆ 2 = z 2 in whole numbers,
from its non-trivial primitive solutions, when an even number xโ‰ฅ 4 , xโˆˆ ๐‘ = {1,2,3,4,5,6, โ€ฆ โ€ฆ }. i. e.
When ๐‘ฅ = ๐‘› 2๐‘› + 2 , y = (n n + 1) 2 โˆ’ 1, and z = (n n + 1) 2 + 1
then(n 2n + 2) 2 + (n n + 1 2 โˆ’ 1) 2 = (n n + 1 2 + 1) 2 for all n โˆˆ N
and to our developed series i.e.
2
2
โˆž
โˆž
๐‘› 2๐‘› + 2
+ ๐‘› ๐‘›+1 2 โˆ’1
โˆ’ (๐‘› ๐‘› + 1 2 + 1) 2 = 0 + 0 + 0 + 0 + โ‹ฏ
๐‘›=1 ๐‘Ž๐‘› = ๐‘›=1
๐‘›
2
So at the most, we can say that if ฮถ (1)โ‰  0 then there is a finite number of solutions, if we consider 0 solutions
as finite.
Hence, the Birch and Swinnerton-Dyre conjecture holds true for case 4.
QED
Proofs of cases 1-4 resolves the Birch and Swinnerton-Dyre conjecture with respect to the equation ๐’™2 + ๐’š2 =
๐’›2 whose solutions are in whole numbers, i.e. if ฮถ(1)=0, then there are infinite number of solutions to the
equation ๐’™2 + ๐’š2 = ๐’›2 in whole numbers and conversely if ฮถ(1)โ‰  0, there are finite number of solution to the
equation ๐’™2 + ๐’š2 = ๐’›2 in whole numbers. So the Birch and Swinnerton โ€“Dyre conjecture holds true with
respect to the equation ๐’™2 + ๐’š2 = ๐’›2 .
SOLVED EXAMPLES
Formula for finding Non-trivial primitive solutions of the equation x^2+y^2=x^2 in whole numbers, when an
odd
number
xโ‰ค 3,
x
โˆˆN= {1,2,3,4,5,6, โ€ฆ โ€ฆ }
and
๐‘คโ„Ž๐‘’๐‘› ๐‘ฅ = 2๐‘› + 1, ๐‘ฆ =
2๐‘›+1 2 +1
2
(2๐‘›+1)2 โˆ’1
2
2
, ๐‘Ž๐‘›๐‘‘ ๐‘ง =
2๐‘›+1 2 +1
2
,
๐‘กโ„Ž๐‘’๐‘› 2๐‘› + 1
2+
2โˆ—1+1 2 +1
10
2
2๐‘›+1 2 โˆ’1
=
2
๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘› โˆˆ N = {1,2,3,4,5,6 โ€ฆ โ€ฆ }
Examples
๏‚ท
When n=1 we have x=2*1+1=3, y=
When
๏‚ท
n=2
we
(2โˆ—1+1)2 โˆ’1 8
have
When n=3 we have x=2*3+1=7, ๐‘ฆ =
=2=4, ๐‘ง =
โˆด 32 + 42 = 52
2
2
=
(2โˆ—2+1)2 โˆ’1
x=2*2+1=5,๐‘ฆ =
โˆด 52 + 122 = 132
(2โˆ—3+1)2 โˆ’1
2
48
= 2 = 24, ๐‘Ž๐‘›๐‘‘ ๐‘ง =
2
2
โˆด 7 + 242 = 252
๐‘Šโ„Ž๐‘’๐‘› ๐‘› = 4 ๐‘ค๐‘’ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘ฅ = 2 โˆ— 4 + 1 = 9, ๐‘ฆ =
(2โˆ—4+1)2 โˆ’1
80
2
=
=5
24
2
= 12, ๐‘ง =
2โˆ—3+1 2 +1
2
= 2 = 40, ๐‘Ž๐‘›๐‘‘ ๐‘ง =
2
2
โˆด 9 + 40 = 412
120
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 5 ๐‘ค๐‘’ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘ฅ = 2 โˆ— 5 + 1 = 11, ๐‘ฆ =
= 2 = 60, ๐‘Ž๐‘›๐‘‘ ๐‘ง =
2
โˆด
112 + 602 = 612
OR
When an odd number x โ‰ฅ 3, x โˆˆN= {1,2,3,4,5,6, โ€ฆ โ€ฆ }
2
2
๐‘ฅ2 โˆ’ 1
๐‘ฅ2 + 1
๐‘กโ„Ž๐‘’๐‘› ๐‘ฅ 2 +
=
2
2
๐ธ๐‘ฅ๐‘Ž๐‘š๐‘๐‘™๐‘’๐‘ 
When
2
2
32 โˆ’ 1
32 + 1
2
๐‘กโ„Ž๐‘’๐‘› 3 +
=
2
2
DOI: 10.9790/5728-11241023
www.iosrjournals.org
50
2
2โˆ—4+1 2 +1
2
(2โˆ—5+1)2 โˆ’1
=
2
2โˆ—2+1 2 +1
=
26
2
= 13
= 25
=
2โˆ—5+1 2 +1
2
2
82
2
=
= 41
122
2
= 61
x=3,
18 | Page
Resolution of Birch and Swinnerton โ€“Dyre Conjecture, with respect to the solutions of the โ€ฆโ€ฆ
โˆด 32 + 42 = 5^2
2
52 โˆ’ 1
52 + 1
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 5 ๐‘ค๐‘’ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘’๐‘› 52 +
=
2
2
โˆด 52 + 122 = 13^2
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 7
We
have
2
2
2
2
7 โˆ’1
7 +1
๐‘กโ„Ž๐‘’๐‘› 72 +
=
2
2
2
2
2
โˆด 7 + 24 = 25
When
x=9
we
have
2
2
2
2
9 โˆ’1
9 +1
๐‘กโ„Ž๐‘’๐‘› 92 +
=
2
2
2
2
2
โˆด 9 + 40 = 41
2
2
2
11
โˆ’
1
112 + 1
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 11 ๐‘ค๐‘’ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘’๐‘› 112 +
=
2
2
โˆด 112 + 602 = 612
Formula for finding non trivial primitive solutions of the equation ๐‘ฅ 2 + ๐‘ฆ 2 = z 2 in whole numbers, when an
even number xโ‰ฅ 4, x โˆˆN and when x=2n+2, y = ๐‘› + 1 2 โˆ’ 1 , and z = ๐‘› + 1 2 + 1,
๐‘กโ„Ž๐‘’๐‘› 2n + 2 2 +
2
2
[ n + 1)^2 โˆ’ 1 = [ n + 1)^2 + 1 ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ n โˆˆ N = {1,2,3,4,5,6, โ€ฆ โ€ฆ }
Examples
When n=1, then we have ๐‘ฅ = 2 โˆ— 1 + 2 = 4, y = 1 + 1 2 โˆ’ 1 = 3 , and z = 1 + 1 2 + 1 = 5
โˆด 42 + 32 = 52
๐‘Šโ„Ž๐‘’๐‘› ๐‘› = 2, ๐‘กโ„Ž๐‘’๐‘› ๐‘ค๐‘’ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘ฅ = 2 โˆ— 2 + 2 = 6,
y = 2 + 1 2 โˆ’ 1 = 8, and z = 2 + 1 2 + 1 = 10
โˆด 62 + 82 = 102
๐‘Šโ„Ž๐‘’๐‘› ๐‘› = 3, ๐‘กโ„Ž๐‘’๐‘› ๐‘ค๐‘’ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘ฅ = 2 โˆ— 3 + 2 = 8, ๐‘ฆ = 3 + 1 2 โˆ’ 1 = 15, ๐‘Ž๐‘›๐‘‘ ๐‘ง = 3 + 1 2 + 1 = 17
โˆด 82 + 152 = 172
๐‘Šโ„Ž๐‘’๐‘› ๐‘› = 4, ๐‘กโ„Ž๐‘’๐‘› ๐‘ค๐‘’ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘ฅ = 2 โˆ— 4 + 2 = 10, ๐‘ฆ = 4 + 1 2 โˆ’ 1 = 24, ๐‘Ž๐‘›๐‘‘ ๐‘ง = 4 + 1 2 + 1 = 26
โˆด 102 + 242 = 262
๐‘Šโ„Ž๐‘’๐‘› ๐‘› = 5, ๐‘กโ„Ž๐‘’๐‘› ๐‘ค๐‘’ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘ฅ = 2 โˆ— 5 + 2 = 12, ๐‘ฆ = 5 + 1 2 โˆ’ 1 = 35, ๐‘Ž๐‘›๐‘‘ ๐‘ง = 5 + 1 2 + 1 = 37
โˆด 122 + 352 = 372
OR
When an even number x โ‰ฅ 4 โˆˆN then 2๐‘ฅ 2 + x 2 โˆ’ 1 2 = x 2 + 1 2
When x=4, then 2 โˆ— 4 2 + 42 โˆ’ 1 2 = 42 + 1 2
โˆด 82 + 152 = 172
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 6, ๐‘กโ„Ž๐‘’๐‘› 2 โˆ— 6 2 + 62 โˆ’ 1 2 = 62 + 1 2
โˆด 122 + 352 = 372
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 8, ๐‘กโ„Ž๐‘’๐‘› 2 โˆ— 8 2 + 82 โˆ’ 1 2 = 82 + 1 2
โˆด 162 + 632 = 652
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 10, ๐‘กโ„Ž๐‘’๐‘› 2 โˆ— 10 2 + 102 โˆ’ 1 2 = 102 + 1 2
โˆด 202 + 992 = 1012
Formula for finding derived solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 from its non โ€“trivial primitive solutions, in
2
whole numbers, when an odd number xโ‰ฅ 3, n โˆˆN={1,2,3,4,5,6, โ€ฆ โ€ฆ } and x=2n+1,๐‘ฆ =
2๐‘›+1 2 +1
2๐‘›+1 2 โˆ’1
2
2
then [(n 2n + 1 ]2 + [n
When n=1, then
x=2*1+1=3, ๐‘ฆ =
2โˆ—1+1 2 โˆ’1
2
= 4, ๐‘Ž๐‘›๐‘‘ z =
]2 = [n
2๐‘›+1 2 +1
2
2๐‘› +1 2 โˆ’1
2
, ๐‘Ž๐‘›๐‘‘ z =
]2 ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘› โˆˆ ๐‘ = {1,2,3,4,5,6 โ€ฆ โ€ฆ }
2โˆ—1+1 2 +1
then [(1 2 โˆ— 1 + 1 ]2 + [1
=5
2โˆ—1+1 2 โˆ’1 2
] = [1
2
2
2โˆ—1+1
2
2
+1
]2
โˆด (1 โˆ— 3)2 + (1 โˆ— 4)2 = (1 โˆ— 5)2
โˆด 32 + 42 = 52
When n=2, then x=2*2+1=5, ๐‘ฆ =
then
2โˆ—2+1 2 โˆ’1
2
[(2 2 โˆ— 2 + 1 ]2 + [2
DOI: 10.9790/5728-11241023
= 12, ๐‘Ž๐‘›๐‘‘ z =
2โˆ—2+1
2
2
โˆ’1
2โˆ—2+1 2 +1
2
]2 = [2
= 13
2โˆ—2+1
2
www.iosrjournals.org
2
+1
]2
19 | Page
Resolution of Birch and Swinnerton โ€“Dyre Conjecture, with respect to the solutions of the โ€ฆโ€ฆ
โˆด (2 โˆ— 5)2 + (2 โˆ— 12)2 = (2 โˆ— 13)2
โˆด (10)2 + (24)2 = (26)2
2โˆ—3+1 2 โˆ’1
2โˆ—3+1 2 +1
2โˆ—4+1 2 โˆ’1
2โˆ—4+1 2 +1
๐‘Šโ„Ž๐‘’๐‘› ๐‘› = 3, ๐‘กโ„Ž๐‘’๐‘› x=2*3+1=7, ๐‘ฆ =
= 24, ๐‘Ž๐‘›๐‘‘ z =
= 25
2
2
2
2
๐‘กโ„Ž๐‘’๐‘› 3 โˆ— 7 + 3 โˆ— 24 = (3 โˆ— 25)^2
โˆด 212 + 722 = 752
๐‘Šโ„Ž๐‘’๐‘› ๐‘› = 4, ๐‘กโ„Ž๐‘’๐‘› x=2*4+1=9, ๐‘ฆ =
= 40, ๐‘Ž๐‘›๐‘‘ z =
= 41
2
2
๐‘กโ„Ž๐‘’๐‘› 4 โˆ— 9 2 + 4 โˆ— 40 2 = 4 โˆ— 41 2
โˆด 362 + 1602 = 1642
2โˆ—5+1 2โˆ’1
2โˆ—5+1 2 +1
๐‘Šโ„Ž๐‘’๐‘› ๐‘› = 5, ๐‘กโ„Ž๐‘’๐‘› ๐‘ฅ = 2 โˆ— 5 + 1 = 11, ๐‘ฆ =
= 60, ๐‘Ž๐‘›๐‘‘ ๐‘ง =
= 61
2
2
2
2
2
๐‘กโ„Ž๐‘’๐‘› 5 โˆ— 11 + 5 โˆ— 60 = 5 โˆ— 61
โˆด 552 + 3002 = 3052
And so on
Take any non-trivial solution of the equation ๐’™2 + ๐’š2 = ๐’›2 in whole numbers and multiply both sides of the
solution by nโˆˆ ๐‘ = 1,2,3,4,5,6, โ€ฆ โ€ฆ
Example-1
โˆด 32 + 42 = 52
When n=1, we have
โˆด 1โˆ—3 2 + 1โˆ—4 2 = 1โˆ—5 2
โˆด 32 + 42 = 52
When
n=2,
we
have
โˆด 2โˆ—3 2 + 2โˆ—4 2 = 2โˆ—5 2
โˆด 62 + 82 = 102
When
n=3,
we
have
โˆด 3โˆ—3 2 + 3โˆ—4 2 = 3โˆ—5 2
โˆด 92 + 122 = 152
๐‘Šโ„Ž๐‘’๐‘› ๐‘› = 4, ๐‘ค๐‘’ โ„Ž๐‘Ž๐‘ฃ๐‘’ 4 โˆ— 3 2 + 4 โˆ— 4 2 = 4 โˆ— 5 2
โˆด 122 + 162 = 202
๐‘Šโ„Ž๐‘’๐‘› ๐‘› = 5, ๐‘ค๐‘’ โ„Ž๐‘Ž๐‘ฃ๐‘’ 5 โˆ— 3 2 + 5 โˆ— 4 2 = 5 โˆ— 5 2
โˆด 152 + 202 = 252
And so on
Example-2
52 + 122 = 132
๐‘Šโ„Ž๐‘’๐‘› ๐‘› = 1, ๐‘กโ„Ž๐‘’๐‘› 1 โˆ— 5 2 + 1 โˆ— 12 2 = (1 โˆ— 13)2
52 + 122 = 132
๐‘Šโ„Ž๐‘’๐‘› ๐‘› = 2, ๐‘กโ„Ž๐‘’๐‘› 2 โˆ— 5 2 + 2 โˆ— 12 2 = (2 โˆ— 13)2
102 + 242 = 262
๐‘Šโ„Ž๐‘’๐‘› ๐‘› = 3, ๐‘กโ„Ž๐‘’๐‘› 3 โˆ— 5 2 + 3 โˆ— 12 2 = (3 โˆ— 13)2
152 + 362 = 392
๐‘Šโ„Ž๐‘’๐‘› ๐‘› = 4, ๐‘กโ„Ž๐‘’๐‘› 4 โˆ— 5 2 + 4 โˆ— 12 2 = (4 โˆ— 13)2
202 + 482 = 522
๐‘Šโ„Ž๐‘’๐‘› ๐‘› = 5, ๐‘กโ„Ž๐‘’๐‘› 5 โˆ— 5 2 + 5 โˆ— 12 2 = (5 โˆ— 13)2
252 + 602 = 652
๐‘Ž๐‘›๐‘‘ ๐‘ ๐‘œ ๐‘œ๐‘›
OR
When an odd number xโ‰ฅ 3, xโˆˆN= {1,2,3,4,5,6, โ€ฆ โ€ฆ }, then
When X=3 and n=1 we have
When X=3 and n=2 we have
1โˆ—3
2โˆ—3
2
2
+
+
1 3 2 โˆ’1
2
2
=
2
๐‘›๐‘ฅ
1 3 2 +1
2
=
2
+
๐‘› ๐‘ฅ 2 โˆ’1
2
2
=
๐‘› ๐‘ฅ 2 +1
2
2
for all nโˆˆ ๐‘
2
โˆด 3 + 42 = 52
2 3 2 โˆ’1
2
2
2 3 2 +1
2
2
โˆด 62 + 82 = 102
When X=3 and n=3 we have
3โˆ—3
2
+
3 3 2 โˆ’1
2
2
=
3 3 2 +1
2
2
โˆด 92 + 122 = 152
DOI: 10.9790/5728-11241023
www.iosrjournals.org
20 | Page
Resolution of Birch and Swinnerton โ€“Dyre Conjecture, with respect to the solutions of the โ€ฆโ€ฆ
When X=3 and n=4 we have
4โˆ—3
2
+
4 3 2 โˆ’1
2
=
2
4 3 2 +1
2
2
โˆด 122 + 162 = 202
When X=3 and n=5 we have
5โˆ—3
2
+
5 3 2 โˆ’1
2
=
2
5 3 2 +1
2
2
โˆด 152 + 202 = 252
๐‘Ž๐‘›๐‘‘ ๐‘ ๐‘œ ๐‘œ๐‘›
Formula for finding derived solutions of the equation ๐’™2 + ๐’š2 = ๐’›2 in whole numbers, from its non-trivial
primitive solutions, when an even number xโ‰ฅ 4, xโˆˆN= {1,2,3,4,5,6 โ€ฆ โ€ฆ } and x=2n+2, y= ๐‘› + 1 2 โˆ’ 1,
And z = ๐‘› + 1 2 + 1
2
๐‘กโ„Ž๐‘’๐‘› ๐‘› 2๐‘› + 2
+ ๐‘›((๐‘› + 1 2 โˆ’ 1) 2 = (๐‘› (๐‘› + 1 2 + 1))^2,
For all n โˆˆN={1,2,3,4,5,6 โ€ฆ โ€ฆ }.
Examples
๐‘Šโ„Ž๐‘’๐‘› ๐‘› = 1, ๐‘กโ„Ž๐‘’๐‘› 1 2 โˆ— 1 + 2
2
+
1((1 + 1
2
โˆ’1
2
= 1 1+1
2
+1
2
โˆด 42 + 32 = 52
๐‘Šโ„Ž๐‘’๐‘› ๐‘› = 2, ๐‘กโ„Ž๐‘’๐‘›, ๐‘ฅ = 2 2 โˆ— 2 + 2 , ๐‘ฆ = 2 + 1 2 โˆ’ 1, ๐‘Ž๐‘›๐‘‘ ๐‘ง
= 2 + 1 2 + 1, ๐‘กโ„Ž๐‘’๐‘›, 2 โˆ— 6 2 + (2 โˆ— (32 ) โˆ’ 1))^2 =
122 + 162 = 202
๐‘Šโ„Ž๐‘’๐‘› ๐‘› = 3, ๐‘กโ„Ž๐‘’๐‘›, ๐‘ฅ = 3 2 โˆ— 3 + 2 , ๐‘ฆ = 3 + 1 2 โˆ’ 1, ๐‘Ž๐‘›๐‘‘ ๐‘ง = 3 + 1 2 + 1, ๐‘กโ„Ž๐‘’๐‘›,
(3 โˆ— 8)2 + (3 โˆ— 15)2 = (3 โˆ— 17)2
242 + 452 = 512
๐‘Šโ„Ž๐‘’๐‘› ๐‘› = 4, ๐‘กโ„Ž๐‘’๐‘›, ๐‘ฅ = 4 2 โˆ— 4 + 2 , ๐‘ฆ = 4 + 1 2 โˆ’ 1, ๐‘Ž๐‘›๐‘‘ ๐‘ง = 4 + 1 2 + 1, ๐‘กโ„Ž๐‘’๐‘›,
(4 โˆ— 10)2 + (4 โˆ— 24)2 = (4 โˆ— 26)2
402 + 962 = 1042
๐‘Šโ„Ž๐‘’๐‘› ๐‘› = 5, ๐‘กโ„Ž๐‘’๐‘›, ๐‘ฅ = 5 2 โˆ— 5 + 2 , ๐‘ฆ = 5 + 1 2 โˆ’ 1, ๐‘Ž๐‘›๐‘‘ ๐‘ง = 5 + 1 2 + 1, ๐‘กโ„Ž๐‘’๐‘›,
5 โˆ— 12 2 + (5 โˆ— 35)2 = 5 โˆ— 37 2
602 + 1752 = 1852
OR
When an even number xโ‰ฅ2, xโˆˆN={1,2,3,4,5,6, โ€ฆ โ€ฆ }
2
๐‘กโ„Ž๐‘’๐‘› ๐‘› 2๐‘ฅ
+ ๐‘›(x 2 โˆ’ 1) 2 = ๐‘›(x 2 + 1) 2
For all n โˆˆN={1,2,3,4,5,6 โ€ฆ โ€ฆ }
2
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 2, ๐‘Ž๐‘›๐‘‘ ๐‘› = 1, ๐‘กโ„Ž๐‘’๐‘› 1 2 โˆ— 2
+ 1โˆ—2
โˆด 42 + 32 = 52
2
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 2, ๐‘Ž๐‘›๐‘‘ ๐‘› = 2, ๐‘กโ„Ž๐‘’๐‘› 2 2 โˆ— 2
+ 2โˆ—2
โˆด 82 + 152 = 172
2
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 2, ๐‘Ž๐‘›๐‘‘ ๐‘› = 3, ๐‘กโ„Ž๐‘’๐‘› 3 2 โˆ— 2
+ 3โˆ—2
2
2
โˆด 12 + 35 = 372
2
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 2, ๐‘Ž๐‘›๐‘‘ ๐‘› = 4, ๐‘กโ„Ž๐‘’๐‘› 4 2 โˆ— 2
+ 4โˆ—2
โˆด 162 + 632 = 652
2
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 2, ๐‘Ž๐‘›๐‘‘ ๐‘› = 5, ๐‘กโ„Ž๐‘’๐‘› 5 2 โˆ— 2
+ 5โˆ—2
2
โˆ’1
2
=
1โˆ—2
2
+1
2
2
โˆ’1
2
=
2โˆ—2
2
+1
2
2
โˆ’1
2
=
3โˆ—2
2
+1
2
2
โˆ’1
2
=
4โˆ—2
2
+1
2
2
โˆ’1
2
=
5โˆ—2
2
+1
2
1โˆ—4
2
+1
2
โˆด 202 + 992 = 1012
๐‘Ž๐‘›๐‘‘ ๐‘ ๐‘œ ๐‘œ๐‘›
2
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 4, ๐‘Ž๐‘›๐‘‘ ๐‘› = 1, ๐‘กโ„Ž๐‘’๐‘› 1 2 โˆ— 4
+ 1โˆ—4 2 โˆ’1 2 =
2
2
โˆด 8 + 15 = 172
2
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 4, ๐‘Ž๐‘›๐‘‘ ๐‘› = 2, ๐‘กโ„Ž๐‘’๐‘› 2 2 โˆ— 4
+ 2( 1 โˆ— 4 2 โˆ’ 1) 2 =
2
โˆด 16 + 302 = 342
2
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 4, ๐‘Ž๐‘›๐‘‘ ๐‘› = 3, ๐‘กโ„Ž๐‘’๐‘› 3 2 โˆ— 4
+ 3( 1 โˆ— 4 2 โˆ’ 1) 2 =
โˆด 242 + 452 = 512
2
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 4, ๐‘Ž๐‘›๐‘‘ ๐‘› = 4, ๐‘กโ„Ž๐‘’๐‘› 4 2 โˆ— 4
+ 4( 1 โˆ— 4 2 โˆ’ 1) 2 =
โˆด 322 + 602 = 682
DOI: 10.9790/5728-11241023
www.iosrjournals.org
2 1โˆ—4
2
+ 1)
2
3 1โˆ—4
2
+ 1)
2
4 1โˆ—4
2
+ 1)
2
21 | Page
Resolution of Birch and Swinnerton โ€“Dyre Conjecture, with respect to the solutions of the โ€ฆโ€ฆ
2
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 4, ๐‘Ž๐‘›๐‘‘ ๐‘› = 5, ๐‘กโ„Ž๐‘’๐‘› 5 2 โˆ— 4
+ 5( 1 โˆ— 4 2 โˆ’ 1) 2 = 5 1 โˆ— 4 2 + 1)
2
โˆด 40 + 752 = 852
๐‘Ž๐‘›๐‘‘ ๐‘ ๐‘œ ๐‘œ๐‘›
2
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 6, ๐‘Ž๐‘›๐‘‘ ๐‘› = 1, ๐‘กโ„Ž๐‘’๐‘› 1 2 โˆ— 6
+ 1โˆ—6 2 โˆ’1 2 = 1โˆ—6 2 +1 2
2
โˆด 122 + 352 = 372
2
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 6, ๐‘Ž๐‘›๐‘‘ ๐‘› = 2, ๐‘กโ„Ž๐‘’๐‘› 2 2 โˆ— 6
+ 2โˆ—6 2 โˆ’1 2 = 2โˆ—6 2 +1 2
2
2
โˆด 24 + 143 = 1452
2
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 6, ๐‘Ž๐‘›๐‘‘ ๐‘› = 3, ๐‘กโ„Ž๐‘’๐‘› 3 2 โˆ— 6
+ 3โˆ—6 2 โˆ’1 2 = 3โˆ—6 2 +1 2
โˆด 362 + 3232 = 3252
2
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 6, ๐‘Ž๐‘›๐‘‘ ๐‘› = 4, ๐‘กโ„Ž๐‘’๐‘› 4 2 โˆ— 6
+ 4โˆ—6 2 โˆ’1 2 = 4โˆ—6 2 +1 2
2
2
โˆด 48 + 575 = 5772
2
๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ = 6, ๐‘Ž๐‘›๐‘‘ ๐‘› = 5, ๐‘กโ„Ž๐‘’๐‘› 5 2 โˆ— 6
+ 5โˆ—6 2 โˆ’1 2 = 5โˆ—6 2 +1 2
2
2
โˆด 60 + 899 = 9012
๐‘Ž๐‘›๐‘‘ ๐‘ ๐‘œ ๐‘œ๐‘›
๐‘ซ๐’†๐’—๐’†๐’๐’๐’‘๐’Š๐’๐’ˆ ๐’„๐’‰๐’‚๐’Š๐’ ๐’”๐’๐’๐’–๐’•๐’Š๐’๐’๐’” ๐’๐’Š๐’Œ๐’† ๐’๐Ÿ๐Ÿ + ๐’๐Ÿ๐Ÿ + ๐’๐Ÿ๐Ÿ‘ + ๐’๐Ÿ๐Ÿ’ + ๐’๐Ÿ๐Ÿ“ + ๐’๐Ÿ ๐Ÿ” + โ‹ฏ = ๐’๐Ÿ , ๐’‡๐’๐’“ ๐’‚๐’๐’ ๐’
= ๐Ÿ, ๐Ÿ, ๐Ÿ‘, ๐Ÿ’, ๐Ÿ“, ๐Ÿ” โ€ฆ โ€ฆ ๐’Š๐’ ๐’˜๐’‰๐’๐’๐’† ๐’๐’–๐’Ž๐’ƒ๐’†๐’“๐’” ๐’๐’‡ ๐’•๐’‰๐’† ๐’†๐’’๐’–๐’‚๐’•๐’Š๐’๐’ ๐’™๐Ÿ + ๐’š๐Ÿ
= ๐’›๐Ÿ , ๐ฎ๐ฌ๐ข๐ง๐  ๐ญ๐ก๐ž ๐š๐›๐จ๐ฏ๐ž ๐Ÿ๐จ๐ซ๐ฆ๐ฎ๐ฅ๐š๐ž
Examples
Examples-1
32 + 42 = 52
52 + 122 = 132
2
3 + 42 + 122 = 132
132 + 842 = 852
2
3 + 42 + 122 + 842 = 852
852 + 36122 = 36132
2
2
โˆด 3 + 4 + 122 + 842 + 36122 = 36132
3613๐Ÿ + 65268842 = 6526885^2
2
2
โˆด 3 + 4 + 122 + 842 + 36122 + 65268842 = 65268852
65268852 + 213001139016122 = 213001139016132
2
2
2
โˆด 3 + 4 + 12 + 842 + 36122 + 65268842 + 213001139016122 = 213001139016132
213001139016132 + 2268474261108436887220008842 = 226847426110843688722000885^2
32 + 42 + 122 + 842 + 36122 + 65268842 + 213001139016122
+ 2.5729877366557343481074291996722๐‘’ + 522
= 2.5729877366557343481074291996722๐‘’ + 522
๐‘Ž๐‘›๐‘‘ ๐‘ ๐‘œ ๐‘œ๐‘›
Example-2
72 + 242 = 252
252 + 3122 = 3132
2
โˆด 7 + 242 + 3122 = 3132
3132 + 489842 = 489852
2
โˆด 7 + 242 + 3122 + 489842 = 489852
489852 + 11997651122 = 11997651132
2
2
โˆด 7 + 24 + 3122 + 489842 + 11997651122 = 11997651132
2
1199765113 + 7197181631859513842 = 7197181631859513852
72 + 242 + 3122 + 489842 + 11997651122 + 7197181631859513842
+ 2.5899711720987987395271016274749e2
+ 373.3539753361514126792100107233405e + 742
= 3.7335397533615141267921001072334e + 7442
๐‘Ž๐‘›๐‘‘ ๐‘ ๐‘œ ๐‘œ๐‘›
62 + 82 = 102
102 + 242 = 262
โˆด 62 + 82 + 242 = 262
262 + 1682 = 1702
2
โˆด 6 + 82 + 242 + 1682 = 1702
1702 + 72242 = 72262
DOI: 10.9790/5728-11241023
www.iosrjournals.org
22 | Page
Resolution of Birch and Swinnerton โ€“Dyre Conjecture, with respect to the solutions of the โ€ฆโ€ฆ
โˆด 62 + 82 + 242 + 1682 + 72242 = 72262
72262 + 130537682 = 130537702
2
2
โˆด 6 + 8 + 242 + 1682 + 72242 + 130537682 = 130537702
And so on.
Acknowledgement
Clay Mathematics Institute of Cambridge Massachusetts (CMT)
Bibliography
[1].
[2].
Principles of mathematical analysis third edition, by Walter Rudin
Millennium prize problems in mathematics, announced and published by Clay Mathematics Institute of Cambridge Massachusetts
(CMT)
DOI: 10.9790/5728-11241023
www.iosrjournals.org
23 | Page
Related documents