Download MTH55A_Lec-31_sec_7

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chabot Mathematics
§7.3 Radical
Products
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
Chabot College Mathematics
1
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
Review § 7.2
MTH 55
 Any QUESTIONS About
• §7.2 → Rational Exponents
 Any QUESTIONS About HomeWork
• §7.2 → HW-25
Chabot College Mathematics
2
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
Multiplying Radical Expressions
 Note That:
4  9  2  3  6.
4  9  36  6.
 This example suggests the
following.
Chabot College Mathematics
3
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
Product Rule for Radicals
nnb ,
 For any real numbers nnaa and
and
and b ,
n a  n b  n a  b.
 That is, The product of two nth roots
is the nth root of the product of the
two radicands.
Chabot College Mathematics
4
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
Derive Product Rule for Rads
 Rational exponents can be used
to derive the Product Rule for
Radicals:
n a  n b  a1/ n  b1/ n  a  b 1/ n  n a  b.
 
n a  n b  n a  b.
Chabot College Mathematics
5
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
Example  Product Rule
 Multiply
a)
5 6
b) 3 7  3 9
c) 4
x 45

3 z
Chabot College Mathematics
6
 SOLUTION
a)
5  6  5  6  30.
b) 3 7  3 9  3 7  9  3 63
x
5
x
5
5
x
c) 4  4  4   4
3 z
3 z
3z
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
Caveat Product Rule
 CAUTION
 The product rule for radicals applies
only when radicals have the SAME
index:
n a  m b  nm a  b .
Chabot College Mathematics
7
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
Example  Product Rule
 Find the product and write the answer in
simplest form. Assume all variables
represent nonnegative values.
a)
4
b)
7
y5  7 y9
b)
7
y5  7 y9 
7
y5  y9
 4 16

7
y14
2
 y2
24 8
 SOLN
a)
4
2  4 8  4 2 8
Chabot College Mathematics
8
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
Example  Product Rule
 Multiply
Chabot College Mathematics
9
 SOLUTION
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
Simplifying by Factoring
 The number p is a perfect square if
there exists a rational number q for
which q2 = p. We say that p is a
perfect nth power if qn = p for some
rational number q.
 The product rule allows us to
simplify n ab whenever ab contains
a factor that is a perfect nth power
Chabot College Mathematics
10
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
Simplify by Product Rule
 Use The Product Rule in
REVERSE to Facilitate the
Simplification process
n ab  n a  n b
• Note that nnaaand
and
andnnbb must both be
real numbers
Chabot College Mathematics
11
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
Simplify a Radical Expression
with Index n by Factoring
1. Express the radicand as a product
in which one factor is the largest
perfect nth power possible.
2. Take the nth root of each factor
3. Simplification is complete when
no radicand has a factor that is a
perfect nth power.
Chabot College Mathematics
12
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
Nix Negative Radicands
 It is often safe to assume that a
radicand does not represent a
negative number when the
radicand is raised to an even power
 To Clarify the Essence of Radical
Simplification We will make this
assumption
• i.e., do NOT Need AbsVal bars
Chabot College Mathematics
13
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
Example  Simplify by Factoring
 Simplify by factoring
a.
300
b.
4
8m n
c.
3
54s 4
 SOLUTION
a.
300  100  3
100 is the largest perfectsquare factor of 300.
 100  3
 10 3
Chabot College Mathematics
14
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
Example  Simplify by Factoring
 SOLUTION: b.
4
4
8m n
c.
3
54s 4
4
8m n  4  2  m  n
b.
 4m 4  2n
 2m 2 2n
c.
3
4
3
3
54s  27  2  s  s
27s3 is the largest perfect
third-power factor.
3
 27 s3  3 2s
Chabot College Mathematics
15
 3s 3 2s
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
WhiteBoard Work
 Problems From
§7.3 Exercise Set
• 14, 18, 20, 32,
38, 56, 96


Estimating Dinosaur Speed (h ≡ hip hgt)
v = [gh(SL/1.8h)2.56]0.5 (Thulborn)

v = 0.25*g0.5*SL1.67*h−1.17 (Alexander)
Chabot College Mathematics
16
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
All Done for Today
Running
Dinosaur
Chabot College Mathematics
17
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
Example  Simplify by Factoring
 Simplify
 SOLUTION
Cannot be simplified further.
Chabot College Mathematics
18
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
Chabot Mathematics
Appendix
r  s  r  s r  s 
2
2
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
–
Chabot College Mathematics
19
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
Chabot College Mathematics
20
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
Graph y = |x|
6
 Make T-table
x
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
Chabot College Mathematics
21
5
y = |x |
6
5
4
3
2
1
0
1
2
3
4
5
6
y
4
3
2
1
x
0
-6
-5
-4
-3
-2
-1
0
1
2
3
-1
-2
-3
-4
-5
file =XY_Plot_0211.xls
-6
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
4
5
6
5
5
y
4
4
3
3
2
2
1
1
0
-10
-8
-6
-4
-2
-2
-1
0
2
4
6
-1
0
-3
x
0
1
2
3
4
5
-2
-1
-3
-2
M55_§JBerland_Graphs_0806.xls
-3
Chabot College Mathematics
22
-4
M55_§JBerland_Graphs_0806.xls
-5
Bruce Mayer, PE
[email protected] • MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt
8
10
Related documents