Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Testing statistical significance scores of sequence comparison methods with structure similarity Tim Hulsen NCMLS PhD Two-Day Conference 2006-04-27 Introduction • Sequence comparison: Important for finding similar proteins (homologs) for a protein with unknown function • Algorithms: BLAST, FASTA, SmithWaterman • Statistical scores: E-value (standard), Zvalue E-value or Z-value? • Smith-Waterman sequence comparison with Z-value statistics: 100 randomized shuffles to test significance of SW score O. MFTGQEYHSV # seqs rnd ori: 5*SD Z=5 shuffle 1. GQHMSVFTEY 2. YMSHQFTVGE etc. SW score E-value or Z-value? • Z-value calculation takes much time (2x100 randomizations) • Comet et al. (1999) and Bastien et al. (2004): Z-value is theoretically more sensitive and more selective than E-value • BUT Advantage of Z-value has never been proven by experimental results How to compare? • Structural comparison is better than sequence comparison • ASTRAL SCOP: Structural Classification Of Proteins • e.g. a.2.1.3, c.1.2.4; same number ~ same structure • Use structural classification as benchmark for sequence comparison methods ASTRAL SCOP statistics max. % identity members families avg. fam. size max. fam. size families =1 families >1 10% 3631 2250 1.614 25 1655 595 20% 3968 2297 1.727 29 1605 692 25% 4357 2313 1.884 32 1530 783 30% 4821 2320 2.078 39 1435 885 35% 5301 2322 2.283 46 1333 989 40% 5674 2322 2.444 47 1269 1053 50% 6442 2324 2.772 50 1178 1146 70% 7551 2325 3.248 127 1087 1238 90% 8759 2326 3.766 405 1023 1303 95% 9498 2326 4.083 479 977 1349 Methods (1) • Smith-Waterman algorithms: dynamic programming; computationally intensive – Paracel with e-value (PA E): • SW implementation of Paracel – Biofacet with z-value (BF Z): • SW implementation of Gene-IT – ParAlign with e-value (PA E): • SW implementation of Sencel – SSEARCH with e-value (SS E): • SW implementation of FASTA (see next page) Methods (2) • Heuristic algorithms: – FASTA (FA E) • Pearson & Lipman, 1988 • Heuristic approximation; performs better than BLAST with strongly diverged proteins – BLAST (BL E): • Altschul et al., 1990 • Heuristic approximation; stretches local alignments (HSPs) to global alignment • Should be faster than FASTA Method parameters - all: - matrix: BLOSUM62 - gap open penalty: 12 - gap extension penalty: 1 - Biofacet with z-value: 100 randomizations Receiver Operating Characteristic • R.O.C.: statistical value, mostly used in clinical medicine • Proposed by Gribskov & Robinson (1996) to be used for sequence comparison analysis ROC50 Example query d1c75a_ hit # pc e a.3.1.1 1 d1gcya1 b.71.1.1 0.31 2 d1h32b_ a.3.1.1 0.4 3 d1gks__ a.3.1.1 0.52 4 d1a56__ a.3.1.1 0.52 5 d1kx2a_ a.3.1.1 0.67 6 d1etpa1 a.3.1.4 0.67 7 d1zpda3 c.36.1.9 0.87 8 d1eu1a2 c.81.1.1 0.87 9 d451c__ a.3.1.1 1.1 10 d1flca2 c.23.10.2 1.1 11 d1mdwa_ d.3.1.3 1.1 12 d2dvh__ a.3.1.1 1.5 13 d1shsa_ b.15.1.1 1.5 14 d1mg2d_ a.3.1.1 1.5 15 d1c53__ a.3.1.1 2.4 16 d3c2c__ a.3.1.1 2.4 17 d1bvsa1 a.5.1.1 6.8 18 d1dvva_ a.3.1.1 6.8 19 d1cyi__ a.3.1.1 6.8 20 d1dw0a_ a.3.1.1 6.8 21 d1h0ba_ b.29.1.11 6.8 22 d3pfk__ c.89.1.1 6.8 23 d1kful3 d.3.1.3 6.8 24 d1ixrc1 a.4.5.11 14 25 d1ixsb1 a.4.5.11 14 - Take 100 best hits - True positives: in same SCOP family, or false positives: not in same family - For each of first 50 false positives: calculate number of true positives higher in list (0,4,4,4,5,5,6,9,12,12,12,12,12) - Divide sum of these numbers by number of false positives (50) and by total number of possible true positives (size of family -1) = ROC50 (0,167) - Take average of ROC50 scores for all entries ROC50 results 0.50 0.45 0.40 mean ROC50 0.35 pc e bf z bl e fa e ss e pa e 0.30 0.25 0.20 0.15 0.10 0.05 0.00 pdb010 pdb020 pdb025 pdb030 pdb035 pdb040 pdb050 pdb070 pdb090 pdb095 ASTRAL SCOP set Coverage vs. Error • C.V.E. = Coverage vs. Error (Brenner et al., 1998) • E.P.Q. = selectivity indicator (how much false positives?) • Coverage = sensitivity indicator (how much true positives of total?) CVE Example query d1c75a_ hit # pc e a.3.1.1 1 d1gcya1 b.71.1.1 0.31 2 d1h32b_ a.3.1.1 0.4 3 d1gks__ a.3.1.1 0.52 4 d1a56__ a.3.1.1 0.52 5 d1kx2a_ a.3.1.1 0.67 6 d1etpa1 a.3.1.4 0.67 7 d1zpda3 c.36.1.9 0.87 8 d1eu1a2 c.81.1.1 0.87 9 d451c__ a.3.1.1 1.1 10 d1flca2 c.23.10.2 1.1 11 d1mdwa_ d.3.1.3 1.1 12 d2dvh__ a.3.1.1 1.5 13 d1shsa_ b.15.1.1 1.5 14 d1mg2d_ a.3.1.1 1.5 15 d1c53__ a.3.1.1 2.4 16 d3c2c__ a.3.1.1 2.4 17 d1bvsa1 a.5.1.1 6.8 18 d1dvva_ a.3.1.1 6.8 19 d1cyi__ a.3.1.1 6.8 20 d1dw0a_ a.3.1.1 6.8 21 d1h0ba_ b.29.1.11 6.8 22 d3pfk__ c.89.1.1 6.8 23 d1kful3 d.3.1.3 6.8 24 d1ixrc1 a.4.5.11 14 25 d1ixsb1 a.4.5.11 14 - Vary threshold above which a hit is seen as a positive: e.g. e=10,e=1,e=0.1,e=0.01 - True positives: in same SCOP family, or false positives: not in same family - For each threshold, calculate coverage: number of true positives divided by total number of possible true positives - For each threshold, calculate errorsper-query: number of false positives divided by number of queries - Plot coverage on x-axis and errorsper-query on y-axis; right-bottom is best CVE results - (for PDB010) + Mean Average Precision • A.P.: borrowed from information retrieval search (Salton, 1991) • Recall: true positives divided by number of homologs • Precision: true positives divided by number of hits • A.P. = approximate integral to calculate area under recall-precision curve Mean AP Example query d1c75a_ hit # pc e a.3.1.1 1 d1gcya1 b.71.1.1 0.31 2 d1h32b_ a.3.1.1 0.4 3 d1gks__ a.3.1.1 0.52 4 d1a56__ a.3.1.1 0.52 5 d1kx2a_ a.3.1.1 0.67 6 d1etpa1 a.3.1.4 0.67 7 d1zpda3 c.36.1.9 0.87 8 d1eu1a2 c.81.1.1 0.87 9 d451c__ a.3.1.1 1.1 10 d1flca2 c.23.10.2 1.1 11 d1mdwa_ d.3.1.3 1.1 12 d2dvh__ a.3.1.1 1.5 13 d1shsa_ b.15.1.1 1.5 14 d1mg2d_ a.3.1.1 1.5 15 d1c53__ a.3.1.1 2.4 16 d3c2c__ a.3.1.1 2.4 17 d1bvsa1 a.5.1.1 6.8 18 d1dvva_ a.3.1.1 6.8 19 d1cyi__ a.3.1.1 6.8 20 d1dw0a_ a.3.1.1 6.8 21 d1h0ba_ b.29.1.11 6.8 22 d3pfk__ c.89.1.1 6.8 23 d1kful3 d.3.1.3 6.8 24 d1ixrc1 a.4.5.11 14 25 d1ixsb1 a.4.5.11 14 - Take 100 best hits - True positives: in same SCOP family, or false positives: not in same family -For each of the true positives: divide the positive rank (1,2,3,4,5,6,7,8,9,10,11,12) by the true positive rank (2,3,4,5,9,12,14,15,16,18,19,20) - Divide the sum of all of these numbers by the total number of hits (100) = AP (0.140) - Take average of AP scores for all entries = mean AP Mean AP results 0.30 0.27 0.24 mean AP 0.21 pc e bf z bl e fa e ss e pa e 0.18 0.15 0.12 0.09 0.06 0.03 0.00 pdb010 pdb020 pdb025 pdb030 pdb035 pdb040 pdb050 pdb070 pdb090 pdb095 ASTRAL SCOP set Time consumption • PDB095 all-against-all comparison: – Biofacet: multiple days (Z-value calc.!) – SSEARCH: 5h49m – ParAlign: 47m – FASTA: 40m – BLAST: 15m Conclusions • e-value better than Z-value(!) • SW implementations are (more or less) the same (SSEARCH, ParAlign and Biofacet), but SSEARCH with e-value scores best of all • Use FASTA/BLAST only when time is important • Larger structural comparison database needed for better analysis Credits Peter Groenen Wilco Fleuren Jack Leunissen