Download Web_9-1_and_9

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
FACTORS AND
GREATEST COMMON FACTORS
A PRIME NUMBER is a whole number, greater than 1,
whose only factors are 1 and itself.
A COMPOSITE NUMBER is a whole number, greater
than 1, that has more than two factors are 1 and itself.
ERATOSTHENE’S SIEVE
FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100
1
11
21
31
41
51
61
71
81
91
2
12
22
32
42
52
62
72
82
92
3
13
23
33
43
53
63
73
83
93
4
14
24
34
44
54
64
74
84
94
5
15
25
35
45
55
65
75
85
95
6
16
26
36
46
56
66
76
86
96
7
17
27
37
47
57
67
77
87
97
8
18
28
38
48
58
68
78
88
98
9
19
29
39
49
59
69
79
89
99
PRIME NUMBERS ARE GREATER THAN 1.
10
20
30
40
50
60
70
80
90
100
ERATOSTHENE’S SIEVE
FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100
1
11
21
31
41
51
61
71
81
91
2
12
22
32
42
52
62
72
82
92
3
13
23
33
43
53
63
73
83
93
4
14
24
34
44
54
64
74
84
94
5
15
25
35
45
55
65
75
85
95
6
16
26
36
46
56
66
76
86
96
7
17
27
37
47
57
67
77
87
97
8
18
28
38
48
58
68
78
88
98
So, 2 is the smallest prime number.
9
19
29
39
49
59
69
79
89
99
10
20
30
40
50
60
70
80
90
100
ERATOSTHENE’S SIEVE
FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100
1
11
21
31
41
51
61
71
81
91
2
12
22
32
42
52
62
72
82
92
3
13
23
33
43
53
63
73
83
93
4
14
24
34
44
54
64
74
84
94
5
15
25
35
45
55
65
75
85
95
6
16
26
36
46
56
66
76
86
96
7
17
27
37
47
57
67
77
87
97
8
18
28
38
48
58
68
78
88
98
9
19
29
39
49
59
69
79
89
99
10
20
30
40
50
60
70
80
90
100
Any number divisible by 2 (evens) are not prime.
ERATOSTHENE’S SIEVE
FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100
1
11
21
31
41
51
61
71
81
91
2
12
22
32
42
52
62
72
82
92
3
13
23
33
43
53
63
73
83
93
4
14
24
34
44
54
64
74
84
94
5
15
25
35
45
55
65
75
85
95
6
16
26
36
46
56
66
76
86
96
7
17
27
37
47
57
67
77
87
97
8
18
28
38
48
58
68
78
88
98
So, 3 is the next prime number.
9
19
29
39
49
59
69
79
89
99
10
20
30
40
50
60
70
80
90
100
ERATOSTHENE’S SIEVE
FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100
1
11
21
31
41
51
61
71
81
91
2
12
22
32
42
52
62
72
82
92
3
13
23
33
43
53
63
73
83
93
4
14
24
34
44
54
64
74
84
94
5
15
25
35
45
55
65
75
85
95
6
16
26
36
46
56
66
76
86
96
7
17
27
37
47
57
67
77
87
97
8
18
28
38
48
58
68
78
88
98
9
19
29
39
49
59
69
79
89
99
10
20
30
40
50
60
70
80
90
100
Any number divisible by 3, is not a prime number.
ERATOSTHENE’S SIEVE
FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100
1
11
21
31
41
51
61
71
81
91
2
12
22
32
42
52
62
72
82
92
3
13
23
33
43
53
63
73
83
93
4
14
24
34
44
54
64
74
84
94
5
15
25
35
45
55
65
75
85
95
6
16
26
36
46
56
66
76
86
96
7
17
27
37
47
57
67
77
87
97
8
18
28
38
48
58
68
78
88
98
The next prime number is 5.
9
19
29
39
49
59
69
79
89
99
10
20
30
40
50
60
70
80
90
100
ERATOSTHENE’S SIEVE
FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100
1
11
21
31
41
51
61
71
81
91
2
12
22
32
42
52
62
72
82
92
3
13
23
33
43
53
63
73
83
93
4
14
24
34
44
54
64
74
84
94
5
15
25
35
45
55
65
75
85
95
6
16
26
36
46
56
66
76
86
96
7
17
27
37
47
57
67
77
87
97
8
18
28
38
48
58
68
78
88
98
9
19
29
39
49
59
69
79
89
99
10
20
30
40
50
60
70
80
90
100
Any number divisible by 5 is not a prime number.
ERATOSTHENE’S SIEVE
FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100
1
11
21
31
41
51
61
71
81
91
2
12
22
32
42
52
62
72
82
92
3
13
23
33
43
53
63
73
83
93
4
14
24
34
44
54
64
74
84
94
5
15
25
35
45
55
65
75
85
95
6
16
26
36
46
56
66
76
86
96
7
17
27
37
47
57
67
77
87
97
8
18
28
38
48
58
68
78
88
98
7 is the next prime number.
9
19
29
39
49
59
69
79
89
99
10
20
30
40
50
60
70
80
90
100
ERATOSTHENE’S SIEVE
FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100
1
11
21
31
41
51
61
71
81
91
2
12
22
32
42
52
62
72
82
92
3
13
23
33
43
53
63
73
83
93
4
14
24
34
44
54
64
74
84
94
5
15
25
35
45
55
65
75
85
95
6
16
26
36
46
56
66
76
86
96
7
17
27
37
47
57
67
77
87
97
8
18
28
38
48
58
68
78
88
98
9
19
29
39
49
59
69
79
89
99
10
20
30
40
50
60
70
80
90
100
Any number divisible by 7 is not a prime number.
ERATOSTHENE’S SIEVE
FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100
1
11
21
31
41
51
61
71
81
91
2
12
22
32
42
52
62
72
82
92
3
13
23
33
43
53
63
73
83
93
4
14
24
34
44
54
64
74
84
94
5
15
25
35
45
55
65
75
85
95
6
16
26
36
46
56
66
76
86
96
7
17
27
37
47
57
67
77
87
97
8
18
28
38
48
58
68
78
88
98
11 is the next prime number.
9
19
29
39
49
59
69
79
89
99
10
20
30
40
50
60
70
80
90
100
ERATOSTHENE’S SIEVE
FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100
1
11
21
31
41
51
61
71
81
91
2
12
22
32
42
52
62
72
82
92
3
13
23
33
43
53
63
73
83
93
4
14
24
34
44
54
64
74
84
94
5
15
25
35
45
55
65
75
85
95
6
16
26
36
46
56
66
76
86
96
7
17
27
37
47
57
67
77
87
97
8
18
28
38
48
58
68
78
88
98
9
19
29
39
49
59
69
79
89
99
10
20
30
40
50
60
70
80
90
100
Numbers divisible by 11 are already crossed out.
ERATOSTHENE’S SIEVE
FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100
1
11
21
31
41
51
61
71
81
91
2
12
22
32
42
52
62
72
82
92
3
13
23
33
43
53
63
73
83
93
4
14
24
34
44
54
64
74
84
94
5
15
25
35
45
55
65
75
85
95
6
16
26
36
46
56
66
76
86
96
7
17
27
37
47
57
67
77
87
97
8
18
28
38
48
58
68
78
88
98
13 is the next prime number.
9
19
29
39
49
59
69
79
89
99
10
20
30
40
50
60
70
80
90
100
ERATOSTHENE’S SIEVE
FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100
1
11
21
31
41
51
61
71
81
91
2
12
22
32
42
52
62
72
82
92
3
13
23
33
43
53
63
73
83
93
4
14
24
34
44
54
64
74
84
94
5
15
25
35
45
55
65
75
85
95
6
16
26
36
46
56
66
76
86
96
7
17
27
37
47
57
67
77
87
97
8
18
28
38
48
58
68
78
88
98
9
19
29
39
49
59
69
79
89
99
10
20
30
40
50
60
70
80
90
100
Numbers divisible by 13 are already crossed out.
ERATOSTHENE’S SIEVE
FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100
1
11
21
31
41
51
61
71
81
91
2
12
22
32
42
52
62
72
82
92
3
13
23
33
43
53
63
73
83
93
4
14
24
34
44
54
64
74
84
94
5
15
25
35
45
55
65
75
85
95
6
16
26
36
46
56
66
76
86
96
7
17
27
37
47
57
67
77
87
97
8
18
28
38
48
58
68
78
88
98
9
19
29
39
49
59
69
79
89
99
10
20
30
40
50
60
70
80
90
100
Next prime number is 17. All multiples crossed out.
ERATOSTHENE’S SIEVE
FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100
1
11
21
31
41
51
61
71
81
91
2
12
22
32
42
52
62
72
82
92
3
13
23
33
43
53
63
73
83
93
4
14
24
34
44
54
64
74
84
94
5
15
25
35
45
55
65
75
85
95
6
16
26
36
46
56
66
76
86
96
7
17
27
37
47
57
67
77
87
97
8
18
28
38
48
58
68
78
88
98
9
19
29
39
49
59
69
79
89
99
10
20
30
40
50
60
70
80
90
100
19 is the next prime number. All multiples crossed out.
ERATOSTHENE’S SIEVE
FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100
1
11
21
31
41
51
61
71
81
91
2
12
22
32
42
52
62
72
82
92
3
13
23
33
43
53
63
73
83
93
4
14
24
34
44
54
64
74
84
94
5
15
25
35
45
55
65
75
85
95
6
16
26
36
46
56
66
76
86
96
7
17
27
37
47
57
67
77
87
97
8
18
28
38
48
58
68
78
88
98
9
19
29
39
49
59
69
79
89
99
10
20
30
40
50
60
70
80
90
100
The remaining numbers have no multiples uncrossed.
ERATOSTHENE’S SIEVE
FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100
1
11
21
31
41
51
61
71
81
91
2
12
22
32
42
52
62
72
82
92
3
13
23
33
43
53
63
73
83
93
4
14
24
34
44
54
64
74
84
94
5
15
25
35
45
55
65
75
85
95
6
16
26
36
46
56
66
76
86
96
7
17
27
37
47
57
67
77
87
97
8
18
28
38
48
58
68
78
88
98
9
19
29
39
49
59
69
79
89
99
10
20
30
40
50
60
70
80
90
100
The numbers circled are prime numbers.
Except for 1, all the rest are composite numbers.
PRIME FACTORIZATION
Write the prime factorization of 80.
FACTOR TREE
80
10
2
8
5 2
4
2
24•5
2
PRIME FACTORIZATION
Write the prime factorization of 80.
FACTOR TREE
Start with smallest
prime number
80
10
2
4
2
2
80
40
20
2
10
5
5
1
2
2
8
5 2
24•5
INVERTED DIVISION
2
24•5
PRIME FACTORIZATION
OF A MONOMIAL
Factor -36x2y3z completely:
-1 • 2 • 2 • 3 • 3 • x • x • y • y • y • z
Factor 54x4yz3 completely:
2•3•3•3•x•x•x•x•y•z•z•z
PRIME FACTORIZATION
OF A MONOMIAL
Find the GCF for -36x2y3z and 54x4yz3
-1 • 2 • 2 • 3 • 3 • x • x • y • y • y • z
2•3•3•3•x•x•x•x•y•z•z•z
PRIME FACTORIZATION
OF A MONOMIAL
Find the GCF for -36x2y3z and 54x4yz3
-1 • 2 • 2 • 3 • 3 • x • x • y • y • y • z
2•3•3•3•x•x•x•x•y•z•z•z
CIRCLE THE COMMON FACTORS
PRIME FACTORIZATION
OF A MONOMIAL
Find the GCF for -36x2y3z and 54x4yz3
-1 • 2 • 2 • 3 • 3 • x • x • y • y • y • z
2•3•3•3•x•x•x•x•y•z•z•z
GCF = 2 • 3 • 3 • x • x • y • z = 18x2yz
MULTIPLY THE COMMON FACTORS
PRIME FACTORIZATION
OF A MONOMIAL
Find the GCF for 28m3n and 21m2n5
2•2•7•m•m•m•n
3•7•m•m•n•n•n•n•n
GCF = 7 • m • m • n = 7m2n
MULTIPLY THE COMMON FACTORS
FLASH CARDS
WHAT IS THE GCF?
20 and 30
10
FLASH CARDS
WHAT IS THE GCF?
4x and 6y
2
FLASH CARDS
WHAT IS THE GCF?
6m and 12m
6m
FLASH CARDS
WHAT IS THE GCF?
8xy and 12xz
4x
FLASH CARDS
WHAT IS THE GCF?
2
10a b
and
2ab
2
14ab
FACTORING USING THE
DISTRIBUTIVE PROPERTY
Recall the Distributive Property:
Example 1: 5(x + y) = 5x + 5y
Example 2: 2x(x + 3) = 2x2 + 6x
In this section, you will be learning
how to use the Distributive Property
backwards…..or FACTORING.
In other words, start with  5x + 5y
and factor it into  5(x + y)
FACTORING USING THE
DISTRIBUTIVE PROPERTY
In an algebraic expression, the quantities
being multiplied are called FACTORS.
EXAMPLES
10  the factors are 2 and 5.
2xy  the factors are 2, x and y.
5(x + y)  the factors are 5 and (x + y)
3x(x + 7)  the factors are 3, x and (x + 7)
FACTORING USING THE
DISTRIBUTIVE PROPERTY
If we take a look at two expressions:
3x
and
5x
x is a factor in common to both
x is a monomial
So, x is a
Common Monomial Factor
of 3x and 5x.
CMF
FACTORING USING THE
DISTRIBUTIVE PROPERTY
Let’s factor 4x + 8y
What is the CMF (or GCF)
for the two terms?
Answer: 4
Write down the 4 followed by (
4(
Then ask, “what times 4 = 4x”?
Answer: x
Write down the x after the (
4(x
Then ask, what times 4 = 8y?
Answer: 2y
Add that to the “4(x” and close the parentheses.
Final Answer: 4(x + 2y)
FACTORING PRACTICE
Factor: 3m + 12
Step 1: What is the CMF? 3
Step 2: 3 times ? = 3m
3(m
Step 3: 3 times ? = 12 3(m+ 4)
3m + 12 = 3(m + 4)
FACTORING PRACTICE
Factor: m2 – 8m
Step 1: What is the CMF?
Step 2: m times ? = m2
m
m(m
Step 3: m times ? = -8m
m(m – 8)
m2 – 8m = m(m – 8)
FACTORING PRACTICE
Factor: 10x2y – 5xy + 15y
5y
Step 1: What is the CMF?
5y(2x2
Step 2: 5y times ? = 10x2y
Step 3: 5y times ? = – 5xy 5y(2x2 – x
Step 4: 5y times ? = + 15y
5y(2x2 – x + 3)
10x2y + 5xy + 15y
= 5y(2x2 – x + 3)
TRY THESE
1. Factor 2x – 12
2(x – 6)
2. Factor 12ab + 8bc
4b(3a + 2c)
3. Factor 6x2y – 3x3y2 + 5x4y3
x2y(6 – 3xy + 5x2y2)
FLASH CARDS
WHAT IS THE CMF?
6x + 15
3
FLASH CARDS
WHAT IS THE CMF?
12m2 – 8m
4m
FLASH CARDS
WHAT IS THE CMF?
3a2 – 7b2
1
so, the
expression is a
prime polynomial.
FLASH CARDS
WHAT IS THE CMF?
– 4b3 + 8b2c – 6bc2
2b
FLASH CARDS
WHAT IS THE CMF?
a3b+ a2b2 – ab3
ab
FLASH CARDS
FILL IN THE BLANK?
ab(___) = 3ab2
3b
FLASH CARDS
FILL IN THE BLANK?
3m(___) = 6m2
2m
FLASH CARDS
FILL IN THE BLANK?
5xy(___) = 15x2y
3x
FLASH CARDS
FILL IN THE BLANK?
2cd(___) = –12c2d3
2
–6cd
ONE MORE ITEM
TO SOLVE EQUATIONS IN THIS SECTION YOU WILL USE
THE ZERO PRODUCT PROPERTY
For any real numbers a and b,
if ab = 0, then either a = 0 or b= 0.
SOLVING EQUATIONS
STEP 1: Set equation equal to zero
STEP 2: Factor the left side of the equation
STEP 3: Set each factor equal to zero
STEP 4: Solve each equation
SOLVING EQUATIONS
Solve: 3m2 + 12m = 3m
3m2 + 12m = 3m
STEP 1: Set equation = 0
-3m
3m2 + 9m = 0
3m(m + 3) = 0
STEP 2: Factor left side
STEP 3: Set each factor = 0
3m = 0 or m + 3 = 0
3
STEP 4: Solve each equation
-3m
3
-3
m = 0 or m = -3
-3
SOLVING EQUATIONS
Solve: 6x2 = -8x
6x2 = -8x
STEP 1: Set equation = 0
+8x
6x2 + 8x = 0
2x(3x + 4) = 0
STEP 2: Factor left side
STEP 3: Set each factor = 0
2x = 0 or 3x + 4 = 0
2
STEP 4: Solve each equation
+8x
2
-4
-4
3x = -4
3
x = 0 or x =
3
4

3
Related documents