Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
FACTORS AND GREATEST COMMON FACTORS A PRIME NUMBER is a whole number, greater than 1, whose only factors are 1 and itself. A COMPOSITE NUMBER is a whole number, greater than 1, that has more than two factors are 1 and itself. ERATOSTHENE’S SIEVE FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 PRIME NUMBERS ARE GREATER THAN 1. 10 20 30 40 50 60 70 80 90 100 ERATOSTHENE’S SIEVE FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 So, 2 is the smallest prime number. 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 ERATOSTHENE’S SIEVE FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 Any number divisible by 2 (evens) are not prime. ERATOSTHENE’S SIEVE FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 So, 3 is the next prime number. 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 ERATOSTHENE’S SIEVE FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 Any number divisible by 3, is not a prime number. ERATOSTHENE’S SIEVE FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 The next prime number is 5. 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 ERATOSTHENE’S SIEVE FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 Any number divisible by 5 is not a prime number. ERATOSTHENE’S SIEVE FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 7 is the next prime number. 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 ERATOSTHENE’S SIEVE FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 Any number divisible by 7 is not a prime number. ERATOSTHENE’S SIEVE FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 11 is the next prime number. 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 ERATOSTHENE’S SIEVE FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 Numbers divisible by 11 are already crossed out. ERATOSTHENE’S SIEVE FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 13 is the next prime number. 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 ERATOSTHENE’S SIEVE FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 Numbers divisible by 13 are already crossed out. ERATOSTHENE’S SIEVE FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 Next prime number is 17. All multiples crossed out. ERATOSTHENE’S SIEVE FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 19 is the next prime number. All multiples crossed out. ERATOSTHENE’S SIEVE FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 The remaining numbers have no multiples uncrossed. ERATOSTHENE’S SIEVE FIND ALL THE PRIME NUMBERS BETWEEN 1 AND 100 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 The numbers circled are prime numbers. Except for 1, all the rest are composite numbers. PRIME FACTORIZATION Write the prime factorization of 80. FACTOR TREE 80 10 2 8 5 2 4 2 24•5 2 PRIME FACTORIZATION Write the prime factorization of 80. FACTOR TREE Start with smallest prime number 80 10 2 4 2 2 80 40 20 2 10 5 5 1 2 2 8 5 2 24•5 INVERTED DIVISION 2 24•5 PRIME FACTORIZATION OF A MONOMIAL Factor -36x2y3z completely: -1 • 2 • 2 • 3 • 3 • x • x • y • y • y • z Factor 54x4yz3 completely: 2•3•3•3•x•x•x•x•y•z•z•z PRIME FACTORIZATION OF A MONOMIAL Find the GCF for -36x2y3z and 54x4yz3 -1 • 2 • 2 • 3 • 3 • x • x • y • y • y • z 2•3•3•3•x•x•x•x•y•z•z•z PRIME FACTORIZATION OF A MONOMIAL Find the GCF for -36x2y3z and 54x4yz3 -1 • 2 • 2 • 3 • 3 • x • x • y • y • y • z 2•3•3•3•x•x•x•x•y•z•z•z CIRCLE THE COMMON FACTORS PRIME FACTORIZATION OF A MONOMIAL Find the GCF for -36x2y3z and 54x4yz3 -1 • 2 • 2 • 3 • 3 • x • x • y • y • y • z 2•3•3•3•x•x•x•x•y•z•z•z GCF = 2 • 3 • 3 • x • x • y • z = 18x2yz MULTIPLY THE COMMON FACTORS PRIME FACTORIZATION OF A MONOMIAL Find the GCF for 28m3n and 21m2n5 2•2•7•m•m•m•n 3•7•m•m•n•n•n•n•n GCF = 7 • m • m • n = 7m2n MULTIPLY THE COMMON FACTORS FLASH CARDS WHAT IS THE GCF? 20 and 30 10 FLASH CARDS WHAT IS THE GCF? 4x and 6y 2 FLASH CARDS WHAT IS THE GCF? 6m and 12m 6m FLASH CARDS WHAT IS THE GCF? 8xy and 12xz 4x FLASH CARDS WHAT IS THE GCF? 2 10a b and 2ab 2 14ab FACTORING USING THE DISTRIBUTIVE PROPERTY Recall the Distributive Property: Example 1: 5(x + y) = 5x + 5y Example 2: 2x(x + 3) = 2x2 + 6x In this section, you will be learning how to use the Distributive Property backwards…..or FACTORING. In other words, start with 5x + 5y and factor it into 5(x + y) FACTORING USING THE DISTRIBUTIVE PROPERTY In an algebraic expression, the quantities being multiplied are called FACTORS. EXAMPLES 10 the factors are 2 and 5. 2xy the factors are 2, x and y. 5(x + y) the factors are 5 and (x + y) 3x(x + 7) the factors are 3, x and (x + 7) FACTORING USING THE DISTRIBUTIVE PROPERTY If we take a look at two expressions: 3x and 5x x is a factor in common to both x is a monomial So, x is a Common Monomial Factor of 3x and 5x. CMF FACTORING USING THE DISTRIBUTIVE PROPERTY Let’s factor 4x + 8y What is the CMF (or GCF) for the two terms? Answer: 4 Write down the 4 followed by ( 4( Then ask, “what times 4 = 4x”? Answer: x Write down the x after the ( 4(x Then ask, what times 4 = 8y? Answer: 2y Add that to the “4(x” and close the parentheses. Final Answer: 4(x + 2y) FACTORING PRACTICE Factor: 3m + 12 Step 1: What is the CMF? 3 Step 2: 3 times ? = 3m 3(m Step 3: 3 times ? = 12 3(m+ 4) 3m + 12 = 3(m + 4) FACTORING PRACTICE Factor: m2 – 8m Step 1: What is the CMF? Step 2: m times ? = m2 m m(m Step 3: m times ? = -8m m(m – 8) m2 – 8m = m(m – 8) FACTORING PRACTICE Factor: 10x2y – 5xy + 15y 5y Step 1: What is the CMF? 5y(2x2 Step 2: 5y times ? = 10x2y Step 3: 5y times ? = – 5xy 5y(2x2 – x Step 4: 5y times ? = + 15y 5y(2x2 – x + 3) 10x2y + 5xy + 15y = 5y(2x2 – x + 3) TRY THESE 1. Factor 2x – 12 2(x – 6) 2. Factor 12ab + 8bc 4b(3a + 2c) 3. Factor 6x2y – 3x3y2 + 5x4y3 x2y(6 – 3xy + 5x2y2) FLASH CARDS WHAT IS THE CMF? 6x + 15 3 FLASH CARDS WHAT IS THE CMF? 12m2 – 8m 4m FLASH CARDS WHAT IS THE CMF? 3a2 – 7b2 1 so, the expression is a prime polynomial. FLASH CARDS WHAT IS THE CMF? – 4b3 + 8b2c – 6bc2 2b FLASH CARDS WHAT IS THE CMF? a3b+ a2b2 – ab3 ab FLASH CARDS FILL IN THE BLANK? ab(___) = 3ab2 3b FLASH CARDS FILL IN THE BLANK? 3m(___) = 6m2 2m FLASH CARDS FILL IN THE BLANK? 5xy(___) = 15x2y 3x FLASH CARDS FILL IN THE BLANK? 2cd(___) = –12c2d3 2 –6cd ONE MORE ITEM TO SOLVE EQUATIONS IN THIS SECTION YOU WILL USE THE ZERO PRODUCT PROPERTY For any real numbers a and b, if ab = 0, then either a = 0 or b= 0. SOLVING EQUATIONS STEP 1: Set equation equal to zero STEP 2: Factor the left side of the equation STEP 3: Set each factor equal to zero STEP 4: Solve each equation SOLVING EQUATIONS Solve: 3m2 + 12m = 3m 3m2 + 12m = 3m STEP 1: Set equation = 0 -3m 3m2 + 9m = 0 3m(m + 3) = 0 STEP 2: Factor left side STEP 3: Set each factor = 0 3m = 0 or m + 3 = 0 3 STEP 4: Solve each equation -3m 3 -3 m = 0 or m = -3 -3 SOLVING EQUATIONS Solve: 6x2 = -8x 6x2 = -8x STEP 1: Set equation = 0 +8x 6x2 + 8x = 0 2x(3x + 4) = 0 STEP 2: Factor left side STEP 3: Set each factor = 0 2x = 0 or 3x + 4 = 0 2 STEP 4: Solve each equation +8x 2 -4 -4 3x = -4 3 x = 0 or x = 3 4 3