Download Negative Integers - Department of Computer and Information Science

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Department of Computer and Information Science,
School of Science, IUPUI
CSCI N305
Information Representation:
Negative Integer Representation
Dale Roberts
Negative Numbers in Binary
Four different representation schemes are used
for negative numbers
1. Signed Magnitude
Left most bit (LMB) is the sign bit :
0  positive (+)
1  negative (-)
Remaining bits hold absolute magnitude
Example:
210  0000 0010b
Try, 1000 0100b = -410
-210  1000 0010b
Q: 0000 0000 = ?
1000 0000 = ?
Dale Roberts
1’s Complement
2. One’s Complement
– Left most bit is the sign bit :
•
•
0  positive (+)
1  negative (-)
– The magnitude is Complemented
Example:
210  0 000 0010b
-210  1 111 1101b
Exercise: try - 410 using 1’s Complement
Q: 0000 0000 = ?
1111 1111 = ?
Solution:
410 = 0 000 0100
-410 = 1 111 1011
b
b
Dale Roberts
2’s Complement
3. 2’s Complement
• Sign bit same as above
• Magnitude is Complemented first and a “1” is added to
the Complemented digits
Example:
210  0 000 0010b
1’s Complement  1 111 1101b
+
1
-210  1 111 1110b
Exercise: try -710 using 2’s Complement
710  0000 0111
b
1’s Complement 1111 1000b
+
1
-710  1111 1001b
Dale Roberts
2’s Complement
Example: 7+(-3)
[hint]: A – B = A + (~B) +1
710 = 0000 0111b
310 = 0000 0011b
1’s complement 1111 1100
b
2’s complement 1111 1101  -3
10
b
1 1111 111 carry
7+(-3) 
0000 0111
+1111 1101
ignore 1 0000 0100  0000 0100  410
Dale Roberts
Three Representation of Signed Integer
Representation
0 0000
0 0001
0 0010
0 0011
0 0100
0 0101
0 0110
0 0111
0 1000
0 1001
0 1010
0 1011
0 1100
0 1101
0 1110
0 1111
1 0000
1 0001
1 0010
1 0011
1 0100
1 0101
1 0110
1 0111
1 1000
1 1001
1 1010
1 1011
1 1100
1 1101
1 1110
1 1111
Value Representation
Signed Magnitude
1's Complement 2's Complement
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
-0
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12
-13
-14
-15
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
-15
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
-0
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
-16
-15
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
Dale Roberts
Negative Numbers in Binary (cont.)
4. Excess Representation
– For a given fixed number of bits
the range is remapped such that
roughly half the numbers are
negative and half are positive.
Example: (as left)
Excess – 8 notation for 4 bit numbers
Binary value = 8 + excess-8
value
MSB can be used as a sign bit,
but
If MSB =1, positive number
If MSB =0, negative number
Excess Representation is also
called bias
Numbers
Binary
Value
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Notation
Excess – 8
Value
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
Dale Roberts
Fundamental Data Types
• With vs. without using sign bit
For a 16 bit binary pattern:
2 byte unsigned (Default type is int)
0000 0000 0000 0000 (  0D)
0000 0000 0000 0001 (  1D )
0000 0000 0000 0010 (  2D )
….
0111 1111 1111 1111 (  32767D  215 -1)
1000 0000 0000 0000 (  32768D  215)
….
1111 1111 1111 1111 ( 216 –1)
2 byte
int
1000 0000 0000 0000 (  -32768D  - 215 )
1000 0000 0000 0001 (  -32767D  - 215 +1)
….
1111 1111 1111 1110 (  - 2D )
1111 1111 1111 1111 (  - 1D )
0000 0000 0000 0000 (  0D )
0000 0000 0000 0001 (  1D )
0000 0000 0000 0010 (  2D )
….
0111 1111 1111 1111 (  32767D  215 -1)
Dale Roberts
Fundamental Data Types
Four Data Types in C (assume 2’s complement, byte machine)
Data Type
char
Abbreviation
Size (byte)
Range
char
1
-128 ~ 127
unsigned char
1
0 ~ 255
2 or 4
-215 ~ 215-1 or -231 ~ 231-1
2 or 4
0 ~ 65535 or 0 ~ 232-1
int
int
unsigned int
unsigned
short int
short
2
-32768 ~ 32767
unsigned short
int
unsigned short
2
0 ~ 65535
long int
long
4
-231 ~ 231-1
unsigned long
int
unsigned long
4
0 ~ 232-1
float
4
double
8
Note:
27 = 128, 215 =32768, 215 = 2147483648
Complex and double complex are not available
Dale Roberts
Acknowledgements
These slides where originally prepared by Dr. Jeffrey Huang, updated by Dale
Roberts.
Dale Roberts
Related documents