Download + (5 X 2)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Properties of Multiplication
6.C.1.a Multiply whole numbers
3.A.1.a.Use technology tools, including software
and hardware, from a range of teacher-selected
options to learn a new content or reinforce skills
Definitions
• Zero Property – The product of
any factor and 0 equals 0.
• 65 x 0 = 0
•8x0=0
Zero Property
•5x0=0
•ax0=0
•6x0=0
•yx0=0
• 18 x 0 = 0
4x0=0
bx0=0
3x0=0
zx0=0
19 x 0 = 0
Solve these equations using the zero
property
•
•
•
•
•
•
7xn=0
2xm=0
3xz=0
6xg=0
4xs=0
8xc=0
n=0
m=0
z=0
g=0
s=0
c=0
Definitions
• Commutative Property – The
order of the factors does not
change the product.
•6x8=8x6
• 14 x 3 = 3 x 14
Commutative Property
•
•
•
•
•
5 x 4 = 20
axb=c
6 x 3 = 18
axy=z
3 x 4 x 1 = 12
4 x 5 = 20
bxa=c
3 x 6 = 18
yxa=z
1 x 3 x 4 = 12
Solve these equations using the
commutative property
•n+7=7+4
•m+2=2+5
•z+3=3+9
• g + 6 = 6 + 11
• s + 4 = 4 + 20
• c + 8 = 8 + 32
n=4
m=5
z=9
g = 11
s = 20
c = 32
Definitions
• Associative Property – The way
factors are grouped does not
change a product.
• (11 x 3) x 4 = 11 x (3 x 4)
• 5 x (5 x 10) = (5 x 5) x 10
Associative Property
• 5 x (7 x 4) = (5 x 7) x 4
• a x (b x c) = (a x b) x c
• (6 x 3) x 2 = 6 x (3 x 2)
• 12 x (8 x 1) = (12 x 8) x 1
• (9 x 10) x 2 = 9 x (10 x 2)
Rewrite these equations using the
associative property
•
•
•
•
•
•
2 x (3 x 3) =
4 x (9 x 8) =
3 x (7 x 4) =
5 x (6 x 3) =
10 x (5 x 7) =
11 x (2 x 2) =
(2 x 3) x 3
(4 x 9) x 8
(3 x 7) x 4
(5 x 6) x 3
(10 x 5) x 7
(11 x 2) x 2
Definitions
• Identity Property – The product
of any factor and 1 equals the
factor.
• 56 x 1 = 56
• 38 x 1 = 38
Identity Property
•
•
•
•
•
5x1=5
ax1=a
6x1=6
yx1=y
18 x 1 = 18
4x1=4
bx1=b
3x1=3
zx1=z
19 x 1 = 19
Solve these equations using the
identity property
•
•
•
•
•
•
nx1=8
bx1=7
3x1=m
vx1=5
4x1=w
rx1=2
n=8
b=7
m=3
v=5
w=4
r=2
Definitions
• Distributive Property of Multiplication
over Addition – Multiplying a sum by
a number is the same as multiplying
each addend by the number and then
adding the products.
• 6 x (12 + 9) = (6 x 12) + (6 x 9)
• 4 x (15 + 6) = (4 x 15) + (4 x 6)
Distributive Property of
Multiplication over Addition
•
•
•
•
•
5 x (7 + 4) = (5 x 7) + (5 x 4)
a x (b + c) = (a x b) + (a x c)
6 x (3 + 2) = (6 x 3) + (6 x 2)
12 x (8 + 1) = (12 x 8) + (12 x 1)
9 x (10 + 2) = (9 x 10) + (9 x 2)
Solve these equations using the
distributive property of multiplication
over addition
•
•
•
•
•
•
10 x (5 + 2) =
3 x (3 + 4) =
8 x (9 + 2) =
12 x (4 + 8) =
15 x (10 + 11) =
13 x (6 + 3) =
(10 x 5) + (10 x 2) = 70
(3 x 3) + (3 x 4)
= 21
(8 x 9) + (8 x 2)
= 88
(12 x 4) + (12 x 8) = 144
(15 x 10) + (15 x 11) = 315
(13 x 6) + (13 x 3) = 117
Definitions
• Distributive Property of Multiplication over
Subtraction – To multiply a difference of
two numbers by a third number, you can
multiply the first two numbers by the third,
and then find the difference of the products.
• 7 x (23 – 9) = (7 x 23) – (7 x 9)
• 5 x (9 – 3) = (5 x 9) – (5 x 3)
Distributive Property of
Multiplication over Subtraction
• 5 x (7 - 4) = (5 x 7) - (5 x 4)
• a x (b - c) = (a x b) - (a x c)
• 6 x (3 - 2) = (6 x 3) - (6 x 2)
• 12 x (8 - 1) = (12 x 8) - (12 x 1)
• 9 x (10 - 2) = (9 x 10) - (9 x 2)
Solve these equations using the
distributive property of multiplication
over subtraction
•
•
•
•
•
•
(10 x 5) - (10 x 2)
10 x (5 - 2) =
3 x (4 - 3) =
(3 x 4) - (3 x 3)
(8 x 9) - (8 x 2)
8 x (9 - 2) =
(12 x 8) - (12 x 4)
12 x (8 - 4) =
15 x (11 - 10) = (15 x 11) - (15 x 10)
(13 x 6) - (13 x 3)
13 x (6 - 3) =
= 30
=3
= 56
= 48
= 15
= 39
Properties with Beans
• Now that you have learned
about the different properties
we are going to do a handson activity.
Name the property…
3 X 11 = 11 X 3
a.
b.
c.
d.
Identity
Commutative
Zero
associative
Name the property…
13 X 1 = 13
a.
b.
c.
d.
Identity
Commutative
Zero
associative
Name the property…
20 X 0
a.
b.
c.
d.
Identity
Commutative
Zero
associative
Name the property…
(12 X 4) X 3 = 12 X (4 X 3)
a.
b.
c.
d.
Identity
Commutative
Zero
associative
Name the property…
3 X (9 – 1) = (3 X 9) – (3 X 1)
a. Identity
b. Commutative
c.
d.
Distributive of
multiplication over
subtraction
Distributive of
multiplication over
addition
Name the property…
5 X (6 + 2) = (5 X 6) + (5 X 2)
a. Identity
b. Commutative
c.
d.
Distributive of
multiplication over
subtraction
Distributive of
multiplication over
addition
Now that you can identify the
properties…
Let’s use those properties to solve
some problems.
8 x 56
6
7
8
9
10
11
21
22
23
24
25
26
27
28
29
30
31
12
32
13
14
15
16
17
18
19
6
5
25%
45
4
25%
0
3
44
2
0
1
25%
50
25%
8
400
448
500
456
40
1.
2.
3.
4.
10
20
4 x (30 + 15)
6
7
8
9
10
11
21
22
23
24
25
26
27
28
29
30
31
12
32
13
14
15
16
17
18
19
0
5
25%
18
4
25%
0
3
14
2
0
1
25%
16
25%
0
120
140
160
180
12
1.
2.
3.
4.
10
20
(2000 x 0) x 16
5
6
7
8
9
10
11
21
22
23
24
25
26
27
28
29
30
31
12
32
13
14
00
4
32
3
00
2
32
1
15
25%
16
17
18
25%
16
25%
0
25%
00
32000
320000
0
16
0
1.
2.
3.
4.
10
19
20
(210 x 1) x 1
6
7
8
9
10
11
21
22
23
24
25
26
27
28
29
30
31
12
32
13
14
15
16
17
18
19
0
5
25%
22
4
25%
1
3
21
2
2
1
25%
21
25%
0
212
210
211
220
21
1.
2.
3.
4.
10
20
8 x (60 – 4)
6
7
8
9
10
11
21
22
23
24
25
26
27
28
29
30
31
12
32
13
14
15
16
17
18
19
8
5
25%
44
4
25%
6
3
42
2
6
1
25%
40
25%
0
416
420
406
448
41
1.
2.
3.
4.
10
20
4 x (80 – 5)
6
7
8
9
10
11
21
22
23
24
25
26
27
28
29
30
31
12
32
13
14
15
16
17
18
19
0
5
25%
22
4
25%
0
3
28
2
0
1
25%
32
25%
5
300
285
320
220
30
1.
2.
3.
4.
10
20
Related documents