Download 6.1 Using Properties of Exponents

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
6.1 Using
Properties of
Exponents
p. 323
Properties of Exponents
a&b are real numbers, m&n are integers
•
Product Property: am * an=am+n
•
Power of a Power Property: (am)n=amn
•
Power of a Product Property: (ab)m=ambm
1
a-m= a m
•
Negative Exponent Property:
•
•
Zero Exponent Property: a0=1; a≠0
Quotient of Powers: am = am-n; a≠0
an
Power of Quotient:  a  m a m b≠0
•
   m
b
b
; a≠0
Example 1 – Product Property
•
*
=
• (-5)4+5 =
9
• (-5) =
• -1953125
4
(-5)
5
(-5)
Example 2
•
* =
5+2
• x =
7
• x
5
x
2
x
Example 3 – Power of a Power
•
=
3*4
• 2 =
12
• 2 =
• 4096
3
4
(2 )
Example 4
•
=
4*2
• 3 =
8
• 3 =
• 6561
4
2
(3 )
Example 5 – Neg. Exponent
•
=
• (-5)-6+4 =
-2
• (-5) =
-6
4
(-5) (-5)
1
1

2
 5 25
Example 6 – Quotient of
Powers
5
x

3
x
x
5 3
 x
2
Example 7 – Power of
Quotient
2
 r 
r
 5   5 2 
s 
s 
2
2
r

10
s
2 10
r s
Example 8 – Zero Exponent
•
=
• 72 b-3*2 b5 b =
• 49 b-6+5+1 =
• 49b0 =
• 49
-3
2
5
(7b ) b b
Example 9 – Quotient of
Powers
5
x

10
x
x
5 10
x
5
1
 5
x
Scientific Notation
• 131,400,000,000=
1.314 x 1011
Put that number here!
Move the decimal
behind the 1st number
How many
places did you
have to move
the decimal?
Example – Scientific Notation
• 131,400,000,000 =
•
5,284,000
1.314 x 1011 =
5.284 x 106
1.314
5
11 6
*10
 .249 *10  24,900
5.284
Assignment
Related documents