Download Complex Numbers in Trigonometric Forms

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Complex Numbers in Polar Form
Objectives of this Section
• Convert a Complex Number from Rectangular Form
to Polar Form
• Plot Points in the Complex Plane
• Find the Products and Quotients of Complex
Numbers in Polar Form
• Use De Moivre’s Theorem
• Find Complex Roots
The Complex Plane
Imaginary
Axis
O
z  x  yi
Real
Axis
Let z  x  yi be a complex number. The
magnitude or modulus of z, denoted by
z is defined as the distance from the origin
to the point ( x, y). Thus,
z x y
2
2
Imaginary
Axis
y
z  x  yi
z
O
x
Real
Axis
Recall, if z  x  yi , then its conjugate,
denoted by z , is z  x  yi. Because
zz  x  y , it follows that:
2
2
z  zz
z  x  yi  r cos r sini

Cartesian
Form

Polar Form
z  rcos  i sin
where  , 0   < 2 , is the argument of z
z  zz 

rcos  i sinrcos i sin

 r cos  icossin isincos i sin 
2
2
2
 r cos   sin   r
2
2
z r
2
Plot the point corresponding to z  3  4i in
the complex plane, and write an expression
for z in polar form.
Imaginary
4
Axis
z  3  4i
-3
Real Axis
z   3  4i
Quadrant II
x  3 and y  4
r  ( 3)  4  9  16  5
y 4
sin   
0   < 2
r 5
2
2
  180  53.1  126.9







z r cos
 isin 5cos126
.9 isin126
.9 
Write an expression for

z  3 cos 330  i sin 330
in rectangular form.

z  3 cos 330  i sin 330
 3 1 
 3
 i 
 2 2 


Theorem
Let z1  r1 cos1  i sin 1  and
z2  r2 cos2  i sin 2  be two complex
numbers. Then
z1z2  r1r2 cos1  2   i sin1  2 
If z 2  0 , then
z1 r1
 cos1  2   i sin1  2 
z2 r2


 i sin 120 , find
If z  4 cos 40  i sin 40 and

w  6 cos120
(a) zw

(b) z w
 

zw 4 cos40 i sin40 6 cos120 i sin120



 




 4  6 cos 40 120  i sin 40 120



 24 cos160  i sin160








w  6cos120  i sin 120 
4cos 40  i sin 40 
z

w 6cos120  i sin 120 
4
 cos40  120  i sin40
6
z  4 cos 40  i sin 40
 



  


2
 cos  80  i sin  80
3
2
 cos 280  i sin 280
3
 120

DeMoivre’s Theorem
If z  rcos  i sin is a complex number,
then
z  r cos n  i sin n 
n
n
where n  1 is a positive integer.

Write 3 cos 30  i sin 30

4
in the
standard form a  bi .
3cos 30
 i sin 30

4
 


 81cos120  i sin120 
 3 cos 4  30  i sin 4  30
4

 1
3 
81 81 3
 81   
i   
i
2
2
 2 2 


Write  3  i in the standard form a  bi.
4
r


 3
2
1  4  2
2
5
5 


3 1 
 i sin

3  i  2  
 i   2 cos
6
6 
2
2 



3i

4
 
5
5  
  2  cos
 i sin

6
6 
 
4

 5 
 5
 2  cos  4 
  i sin  4 
6 
6



4




3  i
4
  5
 2  cos  4 
6
 

 5
  i sin  4 
6





 10  
 10 

  i sin 
 3 
 3



4

 16  cos

 1 
 
3
i 
 16     
 
 2
2

 

  8  8 3i
Let w be a complexnumberand let n  2 denote
a positiveinteger. Any complexnumber that
satisfiesthe equation
zn  w
is called the complexnth rootof w.
Finding Complex Roots
Let w  rcos  i sin   be a complexnumber.
If w  0, thereare n distinct complexnth roots
of w, given by theformula
   2 k 
  2 k  
z k  r  cos  
  i sin  

n 
n 
n
 n
n
where k  0, 1, 2,
, n 1
Find the complex fifth roots of  2 3  2i.

3 




 2 3  2i  2 
 i   2 cos 150  i sin 150
 2


The five complex roots of  2 3  2i are








150 360 k
150 360 k 
5
  i sin

zk  2 cos


5 
5 
  5
 5
 


zk  5 2 cos 30  72 k  i sin 30  72 k
k  0, 1, 2 , 3, 4


 


zk  2 cos 30  72 k  i sin 30  72 k
k  0, 1, 2 , 3, 4
z0  5 2 cos 30  i sin 30
5
z1  5
z2  5
z3  5
z4  5


2cos102  i sin 102 
2cos174  i sin 174 
2cos 246  i sin 246 
2cos 318  i sin 318 

Related documents