Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Complex Numbers in Polar Form Objectives of this Section • Convert a Complex Number from Rectangular Form to Polar Form • Plot Points in the Complex Plane • Find the Products and Quotients of Complex Numbers in Polar Form • Use De Moivre’s Theorem • Find Complex Roots The Complex Plane Imaginary Axis O z x yi Real Axis Let z x yi be a complex number. The magnitude or modulus of z, denoted by z is defined as the distance from the origin to the point ( x, y). Thus, z x y 2 2 Imaginary Axis y z x yi z O x Real Axis Recall, if z x yi , then its conjugate, denoted by z , is z x yi. Because zz x y , it follows that: 2 2 z zz z x yi r cos r sini Cartesian Form Polar Form z rcos i sin where , 0 < 2 , is the argument of z z zz rcos i sinrcos i sin r cos icossin isincos i sin 2 2 2 r cos sin r 2 2 z r 2 Plot the point corresponding to z 3 4i in the complex plane, and write an expression for z in polar form. Imaginary 4 Axis z 3 4i -3 Real Axis z 3 4i Quadrant II x 3 and y 4 r ( 3) 4 9 16 5 y 4 sin 0 < 2 r 5 2 2 180 53.1 126.9 z r cos isin 5cos126 .9 isin126 .9 Write an expression for z 3 cos 330 i sin 330 in rectangular form. z 3 cos 330 i sin 330 3 1 3 i 2 2 Theorem Let z1 r1 cos1 i sin 1 and z2 r2 cos2 i sin 2 be two complex numbers. Then z1z2 r1r2 cos1 2 i sin1 2 If z 2 0 , then z1 r1 cos1 2 i sin1 2 z2 r2 i sin 120 , find If z 4 cos 40 i sin 40 and w 6 cos120 (a) zw (b) z w zw 4 cos40 i sin40 6 cos120 i sin120 4 6 cos 40 120 i sin 40 120 24 cos160 i sin160 w 6cos120 i sin 120 4cos 40 i sin 40 z w 6cos120 i sin 120 4 cos40 120 i sin40 6 z 4 cos 40 i sin 40 2 cos 80 i sin 80 3 2 cos 280 i sin 280 3 120 DeMoivre’s Theorem If z rcos i sin is a complex number, then z r cos n i sin n n n where n 1 is a positive integer. Write 3 cos 30 i sin 30 4 in the standard form a bi . 3cos 30 i sin 30 4 81cos120 i sin120 3 cos 4 30 i sin 4 30 4 1 3 81 81 3 81 i i 2 2 2 2 Write 3 i in the standard form a bi. 4 r 3 2 1 4 2 2 5 5 3 1 i sin 3 i 2 i 2 cos 6 6 2 2 3i 4 5 5 2 cos i sin 6 6 4 5 5 2 cos 4 i sin 4 6 6 4 3 i 4 5 2 cos 4 6 5 i sin 4 6 10 10 i sin 3 3 4 16 cos 1 3 i 16 2 2 8 8 3i Let w be a complexnumberand let n 2 denote a positiveinteger. Any complexnumber that satisfiesthe equation zn w is called the complexnth rootof w. Finding Complex Roots Let w rcos i sin be a complexnumber. If w 0, thereare n distinct complexnth roots of w, given by theformula 2 k 2 k z k r cos i sin n n n n n where k 0, 1, 2, , n 1 Find the complex fifth roots of 2 3 2i. 3 2 3 2i 2 i 2 cos 150 i sin 150 2 The five complex roots of 2 3 2i are 150 360 k 150 360 k 5 i sin zk 2 cos 5 5 5 5 zk 5 2 cos 30 72 k i sin 30 72 k k 0, 1, 2 , 3, 4 zk 2 cos 30 72 k i sin 30 72 k k 0, 1, 2 , 3, 4 z0 5 2 cos 30 i sin 30 5 z1 5 z2 5 z3 5 z4 5 2cos102 i sin 102 2cos174 i sin 174 2cos 246 i sin 246 2cos 318 i sin 318