Download 直角三角形與同餘數(Congurent Numbers)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
直角三角形與同餘數
(Congruent Numbers)
台師大數學系
紀文鎮
2007.10.2.
三邊長都是有理數的直角三角形稱為「有理直角三
角形」(rational right triangle)
a,b,c是有理數
c
b
a2+b2=c2
a
有理直角三角形
Congruent numbers
area
6,5,…
5
3
4
41
6
3
2
20
3
Congruent Number Problem
Find all congruent numbers among squarefree positive integers.
在第十世紀,這個問題就備受數學家的重視。
為什麼稱之 congruent number 呢?
Fibonacci 1225
“Liber Quadratorum” (The Book of squares).
定義:An integer n is called a “congruum” if there is an integer x such that
x2±n are both squares.
i.e. x2-n , x2 , x2+n is a 3-term arithmetic progression of squares with
common difference n.
拉丁文 “Congruere”
Congruum
“to meet together”.
Congruent
定理: 設 n>0
1-1
{ right triangles with area n }
對應


0abc
(a, b, c) a 2  b 2  c 2 , 1 ab  n 


2
Pf:
3-term arithmetic progression of
squares with common difference n
1-1
對應

0  r  s  t


2
2
(r , s, t ) s  r  n 
2
2


t

s

n


ba c ba
(a, b, c)  (
, ,
)
2 2 2
(t  r , t  r ,2s)  (r , s, t )
根據上述定理,
n is a congruent number
存在一個有理平方 s2 使得 s2-n
和 s2+n 都是平方
尋找 Congruent numbers :
Arab (10th Century) : 5, 6
Fibonacci (13th Century): 7
Is 1 a congruent number ?
Fibonacci said “no”
But the first acceptable proof due to Fermat.
定理(Fermat): 1 and 2 are not congruent numbers.
w2=u4±v4
Naïve algorithm:
(1)基礎數論: (尋找 integral right triangles)
Primitive Pythagorean triples:
(k 2  l 2 ,2kl, k 2  l 2 ), k  l  0, (k , l )  1, k  l (mod 2)
(2)Find an integral right triangle, then the square free part n
of its area is a congruent numbers.
背景定理:For n>0, there is a 1-1 correspondence
between the following two sets:

 1-1
0abc
(a, b, c) a 2  b 2  c 2 , 1 ab  n  對應


2
( x, y) y
2
2
2
nb 2n
(a, b, c)  (
,
)
ca ca
2
2
2
2
x  n 2nx x  n
(
,
,
)  ( x, y )
y
y
y
n is congruent
y 2  x3  n2 x

 x  n x, y  0
3
has a rational solution (x,y) with y≠0.
方程式
y 2  x3  n 2 x  x( x  n)( x  n), n  0
定義了一條橢圓曲線(elliptic curve)
En: y2=x(x+n)(x-n), n :squarefree positive integer.
定理: En(Q)tors = {(0,0), (n,0), (-n,0), ∞}
定理:n is congruent if and only if there is (x,y) in En(Q) with y≠0.
if and only if rank(En(Q)) ≧1.
In other words, En(Q) is infinite.
Corollary : If there is one rational right triangle with area n,
then there are infinitely many.
Corollary: If there is a right triangle with
rational sides and area n, then L(En, 1) = 0.
反之,若 B-SD conjecture 成立,則 L(En,1)=0 implies n is congruent.
定理(1983)
猜測:If n is positive, squarefree, and n≡ 5, 6, or 7 (mod 8), then
there is a rational right triangle with area n.
This has been verified for n <1,000,000
Serre’s Conjecture
Serre
Ribet
T-W conjecture
FLT
A. Wiles proved T-W conjecture, hence proved FLT.
Summer School on Serre's Modularity Conjecture
Luminy, July 9-20, 2007
今年7月在法國的學術會議證實:
印度人 Chandrashekhar khare,及法國人 Jean –Pierre Wintenberger
兩人已證明了 Serre’s conjecture.
Clay Mathematics Institute
Millennium Problems
Birch and Swinnerton-Dyer Conjecture
Hodge Conjecture
Navier-Stokes Equations
P vs NP
Poincaré Conjecture
Riemann Hypothesis
Yang-Mills Theory
Related documents