Download Multiplying and Dividing Radicals

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Simplifying Radical
Expressions
Simplifying Radicals
Radicals with variables
Definition of Square Root: For any real
numbers a and b, if a2 = b, then a is a
Radical
square root of b.
sign
Index
number
k
a
radicand
Radical Expression
Let’s review. Simplify each expression.
Assume all values of the variable are positive.
Examples:
(1). 3 54
 3 96
3 9 6
 3 3 6
9 6
Examples:
(2).
125 p
3
 25  p  5  p
2
 25 p  5 p
2
 5p 5p
Try these with your partner:
(3).
100n
3
 100  n  n
2
 100n  n
2
 10n n
Try these with your partner:
(4).
2
5y
5y
2


5y
5y

2 5y
25 y
2
2 5y

5y
Adding and Subtracting
Radical Expressions
Radical expressions can be combined (added or
subtracted) if they are like radicals – that is, they
have the same root ________
index and the same
________.
radicand
Example 5: 6 and 5 6 are alike. The root
index is _____
2 for both expressions and the
radicand is _____
6 for both expressions.
3
Example 6: 4 x and 4x are not alike. They
both have the same __________
radicand but the root
indices are not the same.
_______
To determine whether two radicals are like
simplify each
radicals, you must first __________
radicand.
Simplify each expression:
(7).
3 6  7 6  10 6
(8).
8 7 2 7 6 7
(9).
(10).
2  5 2 15 2
 9 2
3 7 5 6 3 2 5
 3  6 3  7 5  2 5  5 3  9 5
Try these with your partner:
(11).
4 11  2 11  9 11  3 11
(12). 5x 3  7 x 3  2x 3
(13). 6 7  9 2  11 7
 5 7  9 2
(14). 9 13  4 10  6 10  3 13
 9 13  3 13  4 10  6 10
 12 13  10 10
Add or subtract as indicated. Simplify first!
(15). 7 5  4 45
 7 5  4 95
 7 5  4 9  5
 7 5  4  3 5
 7 5  12 5
 19 5
(16).
2 50  12 8
 2 25  2  12 4  2
 2 25  2  12 4  2
 2  5  2 12  2  2
 10 2  24 2
 14 2
Try these with your partner:
(17).
2 2  18
 2 2  92
2 2 9 2
 2 2 3 2
5 2
(18).
4 27  2 75
 4 9  3  2 25  3
 4 9  3  2 25  3
 4  3 3  2  5 3
 12 3  10 3
2 3
(19).
 2 9 y  10 y
 2 9  y  10 y
 2 9  y  10 y
 2  3  y  10 y
 6 y  10 y
4 y
(20).
5 80 x  7 20 x
 5 16  5x  7 4  5x
 5 16  5x  7 4  5x
 5  4  5x  7  2  5x
 20 5 x  14 5 x
 6 5x
Related documents