Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
© T Madas A prime number or simply a prime, is a number with exactly two factors. These two factors are always the number 1 and the prime number itself All prime numbers are odd except number 2 1 is not a prime number. 2 is the smallest prime There is no largest prime. There are infinite prime numbers © T Madas The Sieve of Eratosthenes can be used to find the prime numbers up to 100 very quickly 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 © T Madas The Sieve of Eratosthenes can be used to find the prime numbers up to 100 very quickly 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 Cross off the number 1 © T Madas The Sieve of Eratosthenes can be used to find the prime numbers up to 100 very quickly 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 Cross off all the multiples of 2 except 2 © T Madas The Sieve of Eratosthenes can be used to find the prime numbers up to 100 very quickly 2 11 21 31 41 51 61 71 81 91 3 13 23 33 43 53 63 73 83 93 5 15 25 35 45 55 65 75 85 95 7 17 27 37 47 57 67 77 87 97 9 19 29 39 49 59 69 79 89 99 Cross off all the multiples of 3 except 3 © T Madas The Sieve of Eratosthenes can be used to find the prime numbers up to 100 very quickly 2 11 31 41 61 71 91 3 13 23 43 53 73 83 5 25 35 55 65 85 95 7 17 37 47 67 77 19 29 49 59 79 89 97 Cross off all the multiples of 5 except 5 © T Madas The Sieve of Eratosthenes can be used to find the prime numbers up to 100 very quickly 2 11 31 41 61 71 91 3 13 23 43 53 73 83 5 7 17 37 47 67 77 19 29 49 59 79 89 97 Cross off all the multiples of 7 except 7 © T Madas The Sieve of Eratosthenes can be used to find the prime numbers up to 100 very quickly 2 11 31 41 61 71 3 13 23 43 53 5 7 17 19 29 37 47 59 67 73 83 79 89 97 These are the prime numbers up to 100 © T Madas The Prime Numbers up to 200 © T Madas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Primes up to 200 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 © T Madas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Primes up to 200 Cross off: number 1 multiples of 2 except 2 multiples of 3 except 3 multiples of 5 except 5 multiples of 7 except 7 multiples of 11 except 11 multiples of 13 except 13 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 © T Madas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Primes up to 200 Cross off: number 1 multiples of 2 except 2 multiples of 3 except 3 multiples of 5 except 5 multiples of 7 except 7 multiples of 11 except 11 multiples of 13 except 13 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 © T Madas Interesting Facts Involving Primes © T Madas Every even number other than 2, can be written as the sum of two primes 16 = 3 + 13 = 5 + 11 22 = 3 + 19 = 11 + 11 40 = 3 + 37 = 11 + 29 = 17 + 23 52 = 5 + 47 = 11 + 41 Write these even numbers as the sum of two primes, at least three different ways 50 = 3 + 47 = 7 + 43 = 13 + 37 100 = 3 + 97 = 11 + 89 = 17 + 83 150 = 11 + 139 = 13 + 137 = 19 + 131 200 = 3 + 197 = 7 + 193 = 13 + 187 © T Madas Every even number other than 2, can be written as the sum of two primes This statement is known as the Goldbach conjecture. In 1742 Christian Goldbach requested from Leonhard Euler, the most prolific mathematician of all times, for a proof for his conjecture. Euler could not prove this statement, nor has anyone else to this day, although no counter example can be found. C Goldbach 1690 - 1764 L Euler 1707 - 1783 © T Madas Every odd number other than 1, can be written as the sum of a prime and a power of 2 3 = 2 + 20 17 = 13 + 22 35 = 31 + 22 = 19 + 24 = 3 + 25 81 = 79 + 21 = 17 + 26 Write these odd numbers as the sum of a prime and a power of 2 25 = 23 + 21 = 17 + 23 75 = 73 + 21 = 71 + 22 = 67 + 23 125 = 109 + 24 = 64 + 26 175 = 173 + 21 = 167 + 23 = 47 + 27 © T Madas Every even number can be written as the difference of 2 consecutive primes 2 = 5–3 = 7–5 4 = 11 – 7 = 17 – 13 6 = 29 – 23 = 37 – 31 = 59 – 53 8 = 97 – 89 Write these even numbers as the difference of 2 consecutive primes 10 = 149 – 139 12 = 211 – 199 14 = 127 – 113 © T Madas Every prime number greater than 3 is of the form 6n ± 1, where n is a natural number 5 = 6x1–1 7 = 6x1+1 11 = 6 x 2 – 1 13 = 6 x 2 + 1 17 = 6 x 3 – 1 19 = 6 x 3 + 1 23 = 6 x 4 – 1 29 = 6 x 5 – 1 Careful because the converse statement is not true: Every number of the form 6n ± 1 is not a prime number © T Madas Every prime number of the form 4n + 1, where n is a natural number, can be written as the sum of 2 square numbers 5 = 4x1+1= 4+1 13 = 4 x 3 + 1 = 9 + 4 17 = 4 x 4 + 1 = 16 + 1 29 = 4 x 7 + 1 = 25 + 4 37 = 4 x 9 + 1 = 36 + 1 41 = 4 x 10 + 1 = 25 + 16 53 = 4 x 13 + 1 = 49 + 4 61 = 4 x 15 + 1 = 36 + 25 © T Madas Prime numbers which are of the form 2 n – 1, where n is a natural number, are called Mersenne Primes 1st Mersenne: 22 – 1 = 3 2nd Mersenne: 23 – 1 = 7 3rd Mersenne: 25 – 1 = 31 4th Mersenne: 27 – 1 = 127 5th Mersenne: 213 – 1 = 8191 6th Mersenne: 217 – 1 = 131071 7th Mersenne: 219 – 1 = 524287 8th Mersenne: 231 – 1 = 2147483647 9th Mersenne: 261 – 1 = 2305843009213693951 10th Mersenne: 289 – 1 = 618970019642690137449562111 On May 15, 2004, Josh Findley discovered the 41st known Mersenne Prime, 224,036,583 – 1. The number has 6 320 430 digits and is now the largest known prime number! © T Madas Perfect Numbers © T Madas A perfect number is a number which is equal to the sum of its factors, other than the number itself. 6 is perfect because: 1 + 2 + 3 = 6 A deficient number is a number which is more than the sum of its factors, other than the number itself 8 is deficient because: 1 + 2 + 4 = 7 An abundant, or excessive number is a number which is less than the sum of its factors, other than the number itself 12 is abundant because: 1 + 2 + 3 + 4 + 6 = 16 Classify the numbers from 3 to 30 according to these categories © T Madas 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 1+2=3 1 1+2+3=6 1 1+2+4=7 1+3=4 1+2+5=8 1 1+2+3+4+6=16 1 1+2+7=10 1+3+5=9 1+2+4+8=15 D D D P D D D D D A D D D D 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 1+2+3+6+9=21 1 1+2+4+5+10=22 1+3+7=11 1+2+11=14 1 1+2+3+4+6+12=28 1+5=6 1+2+13=16 1+3+9=13 1+2+4+7+14=28 1 1+2+3+5+6+10+15=42 D A D A D D D A D D D P D A © T Madas The definition of a perfect number dates back to the ancient Greeks. It was in fact Euclid that proved that a number of the form (2n – 1)2n – 1 will be a perfect number provided that: 2n – 1 is a prime, which is known as Mersenne Prime Since the perfect numbers are connected to the Mersenne Primes, there are very few perfect numbers that we are aware of, given we only know 41 Mersenne Primes © T Madas The definition of a perfect number dates back to the ancient Greeks. It was in fact Euclid that proved that a number of the form (2n – 1)2n – 1 will be a perfect number provided that: 2n – 1 is a prime, which is known as Mersenne Prime 1st Mersenne: 22 – 1, 1st Perfect: (22 – 1)22 – 1 = 3 x 2 = 6 2nd Mersenne: 23 – 1, 2nd Perfect: (23 – 1)23 – 1 = 7 x 4 = 28 3rd Mersenne: 25 – 1, 3rd Perfect: (25 – 1)25 – 1 = 31 x 16 = 496 7 7–1 = 127 x 64 = 8128 4th Mersenne: 27 – 1, 4th Perfect: (2 – 1)2 13 13 – 1 = 33550336 5th Mersenne: 213 – 1, 5th Perfect: (2 – 1)2 © T Madas © T Madas Worksheets © T Madas © T Madas 12 22 32 42 52 62 72 82 92 11 21 31 41 51 61 71 81 91 93 83 73 63 53 43 33 23 13 3 94 84 74 64 54 44 34 24 14 4 95 85 75 65 55 45 35 25 15 5 96 86 76 66 56 46 36 26 16 6 97 87 77 67 57 47 37 27 17 7 98 88 78 68 58 48 38 28 18 8 99 89 79 69 59 49 39 29 19 9 100 90 80 70 60 50 40 30 20 10 Cross off: number 1 multiples of 2 except 2 multiples of 3 except 3 multiples of 5 except 5 multiples of 7 except 7 Primes up to 100 2 12 22 32 42 52 62 72 82 92 1 11 21 31 41 51 61 71 81 91 93 83 73 63 53 43 33 23 13 3 94 84 74 64 54 44 34 24 14 4 95 85 75 65 55 45 35 25 15 5 96 86 76 66 56 46 36 26 16 6 97 87 77 67 57 47 37 27 17 7 98 88 78 68 58 48 38 28 18 8 99 89 79 69 59 49 39 29 19 9 100 90 80 70 60 50 40 30 20 10 Cross off: number 1 multiples of 2 except 2 multiples of 3 except 3 multiples of 5 except 5 multiples of 7 except 7 Primes up to 100 The Sieve of Eratosthenes can be used to find the prime numbers up to 100 very quickly 2 1 The Sieve of Eratosthenes can be used to find the prime numbers up to 100 very quickly © T Madas 12 22 32 42 52 62 72 82 92 102 112 122 132 142 152 162 172 182 192 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 193 183 173 163 153 143 133 123 113 103 93 83 73 63 53 43 33 23 13 3 194 184 174 164 154 144 134 124 114 104 94 84 74 64 54 44 34 24 14 4 Cross off: number 1 multiples of 2 except 2 multiples of 3 except 3 multiples of 5 except 5 multiples of 7 except 7 multiples of 11 except 11 multiples of 13 except 13 Primes up to 200 2 1 195 185 175 165 155 145 135 125 115 105 95 85 75 65 55 45 35 25 15 5 196 186 176 166 156 146 136 126 116 106 96 86 76 66 56 46 36 26 16 6 197 187 177 167 157 147 137 127 117 107 97 87 77 67 57 47 37 27 17 7 198 188 178 168 158 148 138 128 118 108 98 88 78 68 58 48 38 28 18 8 199 189 179 169 159 149 139 129 119 109 99 89 79 69 59 49 39 29 19 9 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 The Sieve of Eratosthenes can be used to find the prime numbers up to 100 very quickly © T Madas