Download The Complex Number System

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Natural
Counting Numbers
2 34
1
5
8 9
7
6
10
Natural
1, 2,
Whole
Natural
1, 2,
It might seem like an obvious piece of any numerical system, but
the zero is a surprisingly recent development in human history. In
fact, this ubiquitous symbol for “nothing” didn’t even find its way
to Europe until as late as the 12th century.
Click the Web Link Below for more on the History of Zero
http://www.history.com/news/ask-history/who-invented-the-zero
Whole
0 Natural
1, 2,
Whole
Integers
0 Natural
1, 2,
-5
-4
-3
-2
-1






0
1
2
3
4
5
-5
-4
-3
-2







-1
0
1
2
3
4
5
-5
-4
-3








-2
-1
0
1
2
3
4
5
-5
-4









-3
-2
-1
0
1
2
3
4
5
-5










-4
-3
-2
-1
0
1
2
3
4
5











-5
-4
-3
-2
-1
0
1
2
3
4
5
Whole
Integers
1,  2, 
0 Natural
1, 2,
Rational
Whole
Integers
1,  2, 
0 Natural
1, 2,
Integer

Integer
Does it include all the
Integer

Integer
1
3
3 3
 
4 4
1 8
1 
5 5
Does it include all the
Integer

Integer
1
3
3 3
 
4 4
1 8
1 
5 5
Did we get all the
5
5
1
6
6 
1
Did we get all the
5
5
1
6
6 
1
How About
5
.5 
10
7385
7.385 
1000
15
1.5 
10
1375
0.1375 
10,000
Did we get the
5
.5 
10
7385
7.385 
1000
15
1.5 
10
1375
0.1375 
10,000
Did we get all the
1
.3 
3
8
.216 
37
7
.7 
9
Did we get all the
1
.3 
3
8
.216 
37
7
.7 
9
Rational
3
5
1 53
0.5
Whole
Integers
1,  2, 
1.572568
0 Natural
1, 2,
.3
.135
Rational
Irrational
Whole
Integers
Natural
-5
-4
-3
-2
-1
0
1
2
3
4
5
-5
-4
-3
-2
-1
0
1
2
3
4
5
-5
-4
-3
-2
1.414213
-1
0
1
2
3
4
1.414214
2
5
2
-5
-4
-3
-2
-1
0
1
2
3
4
5
7
2
-5
-4
-3
-2
-1
0
1
2
3
4
5
 19
-5
 7
-4
-3
 2
-2
-1
7
2
0
1
2
3
19
4
5
CANNOT BE WRITTEN
AS FRACTIONS
 19
-5
 7
-4
-3
 2
-2
-1
7
2
0
1
2
3
19
4
5
NUMBERS WITH RADICALS
THAT CANNOT BE
SIMPLIFIED ANY FURTHER
 19
-5
 7
-4
3
-3
 2
-2
5
-1
7
2
0
6
1
2
3
7
19
4
5
2 8
Can you think of any more?
Non-Terminating Decimals that do
not Repeat a Pattern
0.10100100010000100000...
Non-Terminating Decimals that do
not Repeat a Pattern
0.10100100010000100000...
0.1000100010001000...  0.1000
Non-Terminating Decimals that do
not Repeat a Pattern
0.10100100010000100000...
0.1000100010001000...  0.1000
Non-Terminating Decimals that do
not Repeat a Pattern
3.141592654...

Non-Terminating Decimals that do
not Repeat a Pattern
2.7182818284590452353602875...
e
Rational
Irrational
Whole
Integers
7
2
19
Natural
0.010010001...

e
Rational
Irrational
Whole
Integers
Natural
REAL NUMBER SYSTEM
Rational
Irrational
Whole
Integers
Natural
REAL NUMBER SYSTEM
REAL NUMBER SYSTEM
Rational
Irrational
Whole
Integers
Natural
REAL NUMBER SYSTEM
i
3i
5  3i
REAL NUMBER SYSTEM
Rational
Irrational
Whole
Integers
Natural
REAL NUMBER SYSTEM
Imaginary Numbers
COMPLEX NUMBER SYSTEM
REAL NUMBER SYSTEM
Rational
Irrational
Whole
Integers
Natural
REAL NUMBER SYSTEM
Imaginary Numbers
COMPLEX NUMBER SYSTEM
Related documents