Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Great Theoretical Ideas In Computer Science Steven Rudich Lecture 11 CS 15-251 Feb 14, 2004 Spring 2003 Carnegie Mellon University Counting III: Pascal’s Triangle, Polynomials, and Vector Programs 1 X+ 2 X+ 3 X 1 + X1 + X 2 + X 3 + … + Xn-1 + Xn = Xn+1 - 1 X- 1 The Geometric Series 1+ X1 + X2 +X 3 +…+ Xn + ….. = 1 1-X The Infinite Geometric Series 1+ X1 + X2 +X 3 +…+ Xn + ….. = 1 1-X (X-1) ( 1 + X1 + X2 + X 3 + … + Xn + … ) = X1 + X2 + X 3 + … + Xn + Xn+1 + …. - 1 - X1 - X2 - X 3 - … - Xn-1 – Xn - Xn+1 - … = 1 1+ X1 + X2 +X 3 +…+ Xn + ….. = 1 + x + ….. ____________________ 1-x | 1 -[1 – x] _____ x -[x – x2 ] ______ x2 -.... 1 1-X 1+ aX1 + a2X2 + a3X 3 +…+ a n Xn + ….. = 1 1 - aX Geometric Series (Linear Form) (1 + aX1 + a2X2 + … + anXn + …..) (1 + bX1 + b2X2 + … + bnXn + …..) = 1 (1 – aX)(1-bX) Geometric Series (Quadratic Form) (1 + aX1 + a2X2 + … + anXn + …..) (1 + bX1 + b2X2 + … + bnXn + …..) = 1 + c1X1 + .. + ck Xk + … Suppose we multiply this out to get a single, infinite polynomial. What is an expression for Cn? (1 + aX1 + a2X2 + … + anXn + …..) (1 + bX1 + b2X2 + … + bnXn + …..) = 1 + c1X1 + .. + ck Xk + … cn = a0bn + a1bn-1 +… aibn-i… + an-1b1 + anb0 (1 + aX1 + a2X2 + … + anXn + …..) (1 + bX1 + b2X2 + … + bnXn + …..) = 1 + c1X1 + .. + ck Xk + … If a = b then cn = (n+1)(an) a0bn + a1bn-1 +… aibn-i… + an-1b1 + anb0 a0bn + a1bn-1 +… aibn-i… + an-1b1 + anb0 = an+1 – bn+1 a- b (a-b) (a0bn + a1bn-1 +… aibn-i… + an-1b1 + anb0) = a1bn +… ai+1bn-i… + anb1 + an+1b0 - a0bn+1 – a1bn… ai+1bn-i… - an-1b2 - anb1 = - bn+1 = + an+1 an+1 – bn+1 (1 + aX1 + a2X2 + … + anXn + …..) (1 + bX1 + b2X2 + … + bnXn + …..) = 1 + c1X1 + .. + ck Xk + … if a b then cn = an+1 – bn+1 a- b a0bn + a1bn-1 +… aibn-i… + an-1b1 + anb0 (1 + aX1 + a2X2 + … + anXn + …..) (1 + bX1 + b2X2 + … + bnXn + …..) = = = n=0..1 or n=0..1 1 (1 – aX)(1-bX) an+1 – bn+1 a- b (n+1)an Xn Xn when a=b Geometric Series (Quadratic Form) Previously, we saw that Polynomials Count! The number of ways to rearrange the letters in the word BANANA. Choice tree for terms of (1+X)3 1 1 1 1 X X X X 1 1 X X X 1 X 1 X X2 X X2 X2 X3 Combine like terms to get 1 + 3X + 3X2 + X3 The Binomial Formula (1 X) n nI F nI nI nI nI F F F F G G XG X . . .G X . . .G X J J J J J 0K H 1K H 2K kK nK H H H 2 k Binomial Coefficients binomial expression n The Binomial Formula n k n (1 x ) x k 0 k n One polynomial, two representations n k n (1 x ) x k 0 k n “Product form” or “Generating form” “Additive form” or “Expanded form” Power Series Representation n k (1 x) x k 0 k n k x “Closed form” or k k 0 “Generating form” n n n Since 0 if k n k “Power series” (“Taylor series”) expansion By playing these two representations against each other we obtain a new representation of a previous insight: n k (1 x ) x k 0 k n n Let x=1. n 2 k 0 k n n The number of subsets of an n-element set By varying x, we can discover new identities n k (1 x ) x k 0 k n n Let x= -1. n 0 ( 1) k k 0 k n Equivalently, n n n n 1 2 k k k even k odd n The number of even-sized subsets of an n element set is the same as the number of odd-sized subsets. n k (1 x ) x k 0 k n n Let x= -1. n k 0 ( 1) k 0 k n Equivalently, n n n n 1 2 k k k even k odd n n k (1 x) x k 0 k n n We could discover new identities by substituting in different numbers for X. One cool idea is to try complex roots of unity, however, the lecture is going in another direction. n k (1 x) x k 0 k n n Proofs that work by manipulating algebraic forms are called “algebraic” arguments. Proofs that build a 1-1 onto correspondence are called “combinatorial” arguments. n n n n 1 2 k even k k odd k n Let On be the set of binary strings of length n with an odd number of ones. Let En be the set of binary strings of length n with an even number of ones. We gave an algebraic proof that On = En A Combinatorial Proof Let On be the set of binary strings of length n with an odd number of ones. Let En be the set of binary strings of length n with an even number of ones. A combinatorial proof must construct a one-toone correspondence between On and En An attempt at a correspondence Let fn be the function that takes an n-bit string and flips all its bits. fn is clearly a one-to-one and onto function ...but do even n work? In f6 we have for odd n. E.g. in f7 we have 110011 001100 0010011 1101100 101010 010101 1001101 0110010 Uh oh. Complementing maps evens to evens! A correspondence that works for all n Let fn be the function that takes an n-bit string and flips only the first bit. For example, 0010011 1010011 1001101 0001101 110011 010011 101010 001010 n k (1 x) x k 0 k n n The binomial coefficients have so many representations that many fundamental mathematical identities emerge… The Binomial Formula (1+X)0 = 1 (1+X)1 = 1 + 1X (1+X)2 = 1 + 2X + 1X2 (1+X)3 = 1 + 3X + 3X2 + 1X3 (1+X)4 = 1 + 4X + 6X2 + 4X3 + 1X4 Pascal’s Triangle: kth row are the coefficients of (1+X)k (1+X)0 = 1 (1+X)1 = 1 + 1X (1+X)2 = 1 + 2X + 1X2 (1+X)3 = 1 + 3X + 3X2 + 1X3 (1+X)4 = 1 + 4X + 6X2 + 4X3 + 1X4 kth Row Of Pascal’s Triangle: n n n n n , , ,..., ,... 0 1 2 k n (1+X)0 = 1 (1+X)1 = 1 + 1X (1+X)2 = 1 + 2X + 1X2 (1+X)3 = 1 + 3X + 3X2 + 1X3 (1+X)4 = 1 + 4X + 6X2 + 4X3 + 1X4 Inductive definition of kth entry of nth row: Pascal(n,0) = Pacal (n,n) = 1; Pascal(n,k) = Pascal(n-1,k-1) + Pascal(n,k) (1+X)0 = 1 (1+X)1 = 1 + 1X (1+X)2 = 1 + 2X + 1X2 (1+X)3 = 1 + 3X + 3X2 + 1X3 (1+X)4 = 1 + 4X + 6X2 + 4X3 + 1X4 “Pascal’s Triangle” 0 0 1 1 1 1 0 1 1 2 2 2 1 2 0 1 2 1 3 3 3 3 1 3 3 0 1 2 3 1 Al-Karaji, Baghdad 953-1029 Chu Shin-Chieh 1303 The Precious Mirror of the Four Elements . . . Known in Europe by 1529 Blaise Pascal 1654 Pascal’s Triangle 1 1 1 1 “It is extraordinary how fertile in 1 1 properties the triangle is. 1 2 1 Everyone can try his 1 3 3 1 hand.” 4 5 6 6 10 15 4 10 20 1 5 15 1 6 1 Summing The Rows n n 2 k 0 k 1 =1 1 + 1 =2 1 + 2 + 1 =4 1 + 3 + 3 + 1 =8 1 + 4 + 6 + 4 + 1 =16 1 + 5 + 10 + 10 + 5 + 1 =32 n 1 + 6 + 15 + 20 + 15 + 6 + 1 =64 1 1 1 1 1 1 1 2 3 4 5 6 1 3 6 10 15 1 1 4 10 20 1 5 15 6+20+6 = 1+15+15+1 1 6 1 Summing on 1st Avenue 1 1 1 1 1 1 6 1 2 3 1 4 5 10 15 1 3 6 1 4 10 20 i n 1 n (n 1) i 2 i k i k 1 2 n 15 n 1 5 1 6 1 Summing on kth Avenue 1 1 1 1 1 1 6 1 2 3 1 4 5 10 15 1 3 6 1 4 10 20 i n 1 k k 1 ik n 15 1 5 1 6 1 1 =2 =3 1 2 1 =5 =8 1 3 3 1 =13 1 1 1 6 1 4 5 10 15 1 6 4 10 20 1 5 15 1 6 1 1 1 2 1 1 6 2 3 1 4 5 10 15 1 2 2 2 2 2 2 1 1 1 3 6 1 4 10 20 15 1 5 1 6 1 Al-Karaji Squares 1 1 1 1 1 1 1 1 =1 2 + 2*1 =4 3 + 2*3 4 + 2*6 5 + 2*10 6 + 2*15 =0 20 1 =9 4 1 10 5 15 =16 1 6 =25 1=36 All these properties can be proved inductively and algebraically. We will give combinatorial proofs using the Manhattan block walking representation of binomial coefficients. How many shortest routes from A to B? A B 10 5 Manhattan j’th Street 4 3 2 1 0 0 1 k’th Avenue 2 3 4 Level n Manhattan ……… 0 k’th Avenue 0 1 …………. 1 2 …………………… 2 3 ………………………… 3 4 ………………………………… 4 Level n Manhattan ……… 0 k’th Avenue 0 1 …………. 1 2 …………………… 2 3 ………………………… 3 4 ………………………………… 4 level n . . . . . . . . . . . . . . . 1. 1 . . . . 2 . . .13 1 . 1. 4 6 1 6 5 k’th Avenue 1 3 1 4 1 1 1 5 10 10 15 20 15 6 ..... ..... 1 level n . . . . . 1 ..... 3 1 ..... 4 1 1 5 6 1 2 1 3 6 10 15 k’th Avenue 1 1 1 5 10 20 1 4 15 6 n n 1 n 1 k k 1 k ..... ..... 1 level n . . . . . 1 ..... 3 1 ..... 4 1 1 5 6 1 2 1 3 6 10 15 k’th Avenue 1 1 1 5 10 20 1 4 15 n n 1 2 k k even 6 ..... ..... 1 level n . . . . . 1 ..... 3 1 ..... 4 1 1 5 1 2 15 1 3 6 10 6 k’th Avenue 1 1 2 1 5 10 20 1 4 15 6 n 2n k n k 0 n By convention: 0! 1 (empty product = 1) n k 1 if k 0 n k 0 if k 0 or k n ..... ..... 1 level n . . . . . 1 ..... 3 1 ..... 4 1 1 5 6 i n 1 i 1 k k 1 n 1 2 1 3 6 10 15 k’th Avenue 1 1 1 5 10 20 1 4 15 6 Corollary ( k 1) n 1 n(n 1) i 2 i 1 2 n Application (Al-Karaji): n 2 2 2 2 i 1 2 3 n2 i 0 (1 0 1) (2 1 2) (3 2 3) 1 0 2 1 3 2 ( n( n 1) n) n n( n 1) i i 1 2 3 4 5 n n 1 2 2 2 2 2 2 2 n 1 n 1 (2n 1)(n 1)n 2 6 3 2 Vector Programs Let’s define a (parallel) programming language called VECTOR that operates on possibly infinite vectors of numbers. Each variable V! can be thought of as: < * , * , * , * , *, *, . . . . . . . . . > 0 1 2 3 4 5......... Vector Programs Let k stand for a scalar constant <k> will stand for the vector <k,0,0,0,…> <0> = <0,0,0,0,….> <1> = <1,0,0,0,…> V! + T! means to add the vectors position-wise. <4,2,3,…> + <5,1,1,….> = <9,3,4,…> Vector Programs RIGHT(V!) means to shift every number in V! one position to the right and to place a 0 in position 0. RIGHT( <1,2,3, …> ) = <0,1,2,3,. …> Vector Programs Example: Stare V! := <6>; V! := RIGHT(V!) + <42>; V! := RIGHT(V!) + <2>; V! := RIGHT(V!) + <13>; V! = <6,0,0,0,..> V! = <42,6,0,0,..> V! = <2,42,6,0,..> V!= <13,2,42,6,.> V! = < 13, 2, 42, 6, 0, 0, 0, . . . > Vector Programs Example: Stare V! := <1>; V! = <1,0,0,0,..> Loop n times: V! := V! + RIGHT(V!); V! = <1,1,0,0,..> V! = <1,2,1,0,..> V! = <1,3,3,1,.> V! = nth row of Pascal’s triangle. 1 X+ 2 X + Vector programs can be implemented by polynomials! 3 X Programs -----> Polynomials The vector V! = < a0, a1, a2, . . . > will be represented by the polynomial: Formal Power Series The vector V! = < a0, a1, a2, . . . > will be represented by the formal power series: V! = < a0, a1, a2, . . . > <0> is represented by <k> is represented by 0 k V! + T! is represented by (PV + PT) RIGHT(V! ) is represented by (PV X) Vector Programs Example: V! := <1>; PV := 1; Loop n times: V! := V! + RIGHT(V!); PV := PV + PV X; V! = nth row of Pascal’s triangle. Vector Programs Example: V! := <1>; PV := 1; Loop n times: V! := V! + RIGHT(V!); PV := PV (1+ X); V! = nth row of Pascal’s triangle. Vector Programs Example: V! := <1>; Loop n times: V! := V! + RIGHT(V!); PV = (1+ X)n V! = nth row of Pascal’s triangle. What is the coefficient of Xk in the expansion of: ( 1 + X + X2 + X3 + X4 + . . . . )n ? Each path in the choice tree for the cross terms has n choices of exponent e1, e2, . . . , en ¸ 0. Each exponent can be any natural number. Coefficient of Xk is the number of non-negative solutions to: e 1 + e 2 + . . . + en = k What is the coefficient of Xk in the expansion of: ( 1 + X + X2 + X3 + X4 + . . . . )n ? n k 1 n -1 ( 1 + X + X2 + X3 + X4 + . . . . )n = n k 1 k 1 X n n -1 1 X k 0 What is the coefficient of Xk in the expansion of: (a0 + a1X + a2X2 + a3X3 + …) ( 1 + X + X2 + X3 + . . . ) = (a0 + a1X + a2X2 + a3X3 + …) / (1 – X) ? a0 + a1 + a2 + .. + ak (a0 + a1X + a2X2 + a3X3 + …) / (1 – X) = i k k a X i k 0 i 0 = PREFIXSUM(a0 + a1X + a2X2 + a3X3 + …) Let’s add an instruction called PREFIXSUM to our VECTOR language. W! := PREFIXSUM(V!) means that the ith position of W contains the sum of all the numbers in V from positions 0 to i. What does this program output? V! := 1! ; Loop k times: V! := PREFIXSUM(V!) ; 0 k’th Avenue 1 2 3 4 Can you see how PREFIXSUM can be represented by a familiar polynomial expression? W! := PREFIXSUM(V!) is represented by PW = PV / (1-X) = PV (1+X+X2+X3+ ….. ) Al-Karaji Program Zero_Ave := PREFIXSUM(<1>); First_Ave := PREFIXSUM(Zero_Ave); Second_Ave :=PREFIXSUM(First_Ave); Output:= First_Ave + 2*RIGHT(Second_Ave) OUTPUT! = <1, 4, 9, 25, 36, 49, …. > Al-Karaji Program Zero_Ave = 1/(1-X); First_Ave = 1/(1-X)2; Second_Ave = 1/(1-X)3; Output = 1/(1-X)2 + 2X/(1-X)3 (1-X)/(1-X)3 + 2X/(1-X)3 = (1+X)/(1-X)3 (1+X)/(1-X)3 Zero_Ave := PREFIXSUM(<1>); First_Ave := PREFIXSUM(Zero_Ave); Second_Ave :=PREFIXSUM(First_Ave); Output:= RIGHT(Second_Ave) + Second_Ave Second_Ave = <1, 3, 6, 10, 15,. RIGHT(Second_Ave) = <0, 1, 3, 6, 10,. Output = <1, 4, 9, 16, 25 (1+X)/(1-X)3 outputs <1, 4, 9, ..> X(1+X)/(1-X)3 outputs <0, 1, 4, 9, ..> The kth entry is k2 X(1+X)/(1-X)3 = k2Xk What does X(1+X)/(1-X)4 do? X(1+X)/(1-X)4 expands to : Sk Xk where Sk is the sum of the first k squares Aha! Thus, if there is an alternative interpretation of the kth coefficient of X(1+X)/(1-X)4 we would have a new way to get a formula for the sum of the first k squares. Using pirates and gold we found that: n k 1 k 1 X n n -1 1 X k 0 THUS: 1 1 X k 3 k X 3 k 0 4 Coefficient of Xk in PV = (X2+X)(1-X)-4 is the sum of the first k squares: 1 1 X k 3 k X 3 k 0 4 Vector programs -> Polynomials -> Closed form expression Expressions of the form Finite Polynomial / Finite Polynomial are called Rational Polynomial Expressions. Clearly, these expressions have some deeper interpretation as a programming language. What about this one? X/(1-X-X2) x 0 1 2 3 F0 x F1 x F2 x F3 x 2 1 x x Fi x i 0 The action of dividing one polynomial by another can simulate a program to recursively compute Fibonacci numbers. i Vector Program I/O Example: INPUT I!; /* not allowed to alter I! */ V! := I! + 1; Loop n times: V! := V! + RIGHT(V!) + I! ; OUTPUT V! Vector Recurrence Relations Let P be a vector program that takes input. A vector relation is any statement of the form: V! = P( V! ) If there is a unique V! satisfying the relation, then V! is said to be defined by the relation V! = P( V! ). Fibonacci Numbers Recurrence Relation Definition: F0 0, F1 1, Fn Fn1 Fn 2 , n 1 Vector Recurrence Relation Definition: F! = RIGHT( F! + <1> ) + RIGHT( RIGHT( F! ) ) F! = RIGHT( F! + <1> ) + RIGHT( RIGHT( F! ) ) F! = a0, a1 RIGHT(F! +<1>) = , a2, a3, a4, . . . 0, a0 + 1, a1, RIGHT( RIGHT( F! ) ) = 0, 0 , a0, a2, a3, a1, a2, a3, . F! = RIGHT( F! + 1 ) + RIGHT( RIGHT( F! ) ) F = a0 + a1 X + a2 X2 + a3 X3 + RIGHT(F + 1) = (F+1) X RIGHT( RIGHT( F ) ) = F X2 F = (F + 1) X + F F = 2 X a0 + a1 X + a2 X2 + a3 X3 + . . . RIGHT(F + 1) = (F+1) X RIGHT( RIGHT( F ) ) = F X2 F = F X + X + F Solve for F. F - FX - FX2 = X F(1-X-X2) = X F = X/(1-X-X2) 2 X What is the Power Series Expansion of x / (1-x-x2) ? Since the bottom is quadratic we can factor it. X / (1-X-X2) = X/(1- X)(1 – (-)-1X) where = “The Golden Ratio” X (1 – X)(1- (--1X) = n=0..∞ ? Linear factors on the bottom Xn (1 + aX1 + a2X2 + … + anXn + …..) (1 + bX1 + b2X2 + … + bnXn + …..) = = = n=0..1 1 (1 – aX)(1-bX) an+1 – bn+1 a- b Xn Geometric Series (Quadratic Form) 1 (1 – X)(1- (--1X) = n=0.. ∞ n+1 – (--1)n+1 5 Xn Geometric Series (Quadratic Form) X (1 – X)(1- (--1X) = n=0.. ∞ n+1 – (--1)n+1 n+1 X 5 Power Series Expansion of F x 0 1 2 3 F0 x F1 x F2 x F3 x 2 1 x x x 2 1 x x i 0 Fi x i 0 i 1 1 i i x 5 i x 0 1 2 3 F0 x F1 x F2 x F3 x 2 1 x x Fi x i 0 The ith Fibonacci number is: i 0 i 1 1 i 5 i References Applied Combinatorics, by Alan Tucker Generatingfunctionology, Herbert Wilf