Download Sect. 2.2 - Mt. San Jacinto College

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Sect. 7.1 Radical Expressions &
Radical Functions

Square Roots






The Principal Square Root
Square Roots of Expressions with Variables
The Square Root Function
Cube Roots
The Cube Root Function
Odd & Even nth Roots
7.1
1
Square Roots
Squaring a Number: 7·7 = 72 = 49
Squaring Negatives: (-7)·(-7) = (-7)2 = 49
The Square Roots
of 49:
49 = 7
49 = -7
7.1
2
Simplifying square roots of numbers

Simplify each: (principal root only)
121  1111  11
25
64

5
8
 
5
8
5
8
 81   9  9
2
0.06
0.0036 
2
7.1
 0.06
3
Finding Function Values

Evaluate each function for a given value of x
f ( x)  3 x  2
g ( z)   6z  4
for f (1)
for g (3)
f (1)  3(1)  2
g (3)   6(3)  4
f (1)  3  2
g (3)   18  4
f (1)  1  1
try f (9)
g (3)   22  4.69
try g (4)
f (9)  3(9)  2
g (4)   6(4)  4
f (9)  27  2
g (4)    24  4
f (9)  25  5
g (4)    20 no real sol
7.1
4
Square Roots of Variable Expressions
25a 
2
(5a)  5a  5 | a |
2
4 x 2  12 x  9 
144 y 32 
(2 x  3) 2  2 x  3
(12 y16 ) 2  12 y16  12 y16
7.1
5
The Square Root Function
7.1
6
Cube Roots
Cubing a Number:
7·7·7 = 73 = 343
Cubing Negatives: (-7)·(-7)·(-7) = (-7)3 = -343
The Cube Root of a positive number is positive
The Cube Root of a negative number is negative
3
64  (4)  4
3
 64  (4)   4
3
3
3
3
7.1
7
Recognizing Perfect Cubes (X)3

Why? You’ll do homework easier, score higher on tests.

Memorize some common perfect cubes of integers
1
13

8
23
27
33
64
43
125
53
216 … 1000
63 … 103
Unlike squares, perfect cubes of negative integers are different:
-216 … -1000
(-6)3 … (-10)3
-1
-8 -27 -64 -125
(-1)3 (-2)3 (-3)3 (-4)3 (-5)3

Flashback: Do you remember how to tell if an integer divides evenly by 3?

Variables with exponents divisible by 3 are also perfect cubes
x3 = (x)3 y6 = (y2)3 -b15 = (-b5)3
Monomials, too, if all factors are also perfect cubes
a3b15 = (ab5)3 -64x18 = (-4x6)3 125x6y3z51 = (5x2yz17)3

7.1
8
Examples to Simplify
3
1000 
3
103  10
3
1
1
  
3
 3
3
1

27
3
 125a 3 
3
0.216 x 3 y 6 
3
3
( 5 a ) 3   5 a
3
(0.6 xy 2 ) 3  0.6 xy 2
7.1
9
The Cube Root Function and its Graph
Here is the basic graph:
x 3 x
0 0
1 1
8 2
1 1
8  2
( x, f ( x))
(0,0)
(1,1)
(8,2)
(1,1)
(8,2)
(1,1)
●
(8,2)
●
●
● (0,0)
(-1,-1)
●
(-8,-2)
7.1
10
Nth Roots
5
100,000  10  10
4 81
16
5

4

3 4
2
3

2
5
5
6
64  2  2
6
6
 0.00243  (0.3)  0.3
5
7.1
5
11
Summary of Definitions
7.1
12
Examples to Simplify
5
 32 x 5 
5
(2 x) 5   2 x
4
4
x

81
4
x2
x 
  
3
3
8
x 24 
8
( x 3 )8  x 3
22
( x  5) 44 
8
2
22
(( x  5) 2 ) 22  ( x  5) 2
7.1
13
What Next?

Present Section 7.2
7.1
14
Related documents