Download Math 112 – Elementary Functions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Math 112
Elementary Functions
Chapter 7 – Applications of Trigonometry
Section 3
Complex Numbers: Trigonometric Form
Graphing Complex Numbers
How do you graph a real number?

Use a number line.

The point corresponding to a real number represents the
directed distance from 0.
y
y is a negative
real number
0
1
x
x is a positive
real number
Graphing Complex Numbers
General form of a complex number …
a + bi
a  R and
 i = -1

bR
Therefore, a complex number is essentially an ordered pair!
(a, b)
Graphing Complex Numbers
Imaginary
Axis
-4
2
Real Axis
All real numbers, a
= a+0i, lie on the
real axis at (a, 0).
Graphing Complex Numbers
Imaginary
Axis
All imaginary numbers, bi = 0+bi,
lie on the imaginary axis at (0, b).
2i
Real Axis
-4i
Graphing Complex Numbers
Imaginary
Axis
2 + 3i
-4 + i
Real Axis
3 – 2i
All other numbers,
a+bi, are located at
the point (a,b).
-3 - 4i
Absolute Value
Real Numbers:
|x| = distance from the origin
 x if x  0
x 
 x if x  0
x x
2
Absolute Value
Complex Numbers:
|a + bi| = distance from the origin
a + bi
b
a  bi  a  b
2
2
a
Note that if b = 0, then this reduces to an equivalent definition for the absolute value
of a real number.
Trigonometric Form of a
Complex Number
r  a  bi  a  b
2
a + bi
r
b

a
2
a
cos 
r

a  r cos 
b
sin  
r

b  r sin 
Therefore,
a + bi = r (cos + i sin)
Note: As a standard,  is to be the smallest positive number possible.
Trigonometric Form of a
Complex Number
a  bi  r (cos   i sin  )
 r cis
Steps for finding the trig
form of a + bi.
• r = |a + bi|
•  is determined by …
cos  = a / r
sin  = b / r
Example:
2 – 3i
r  22   3  13
2
  cos
  sin
1
1
2
 .98  56
13
3
 .98  56
13
Therefore, 2  3i  13 cis 5.3  13 cis 304
Trigonometric Form of a
Complex Number – Determining 
a + bi = r cis 
r = |a+bi|
cos  = a/r
Using cos  = a/r
sin  = b/r
Using sin  = b/r
• Q1:  = cos-1(a/r)
• Q1:  = sin-1(b/r)
• Q2:  = cos-1(a/r)
• Q2:  = 180° - sin-1(b/r)
• Q3:  = 360° - cos-1(a/r)
• Q3:  = 180° - sin-1(b/r)
• Q4:  = 360° - cos-1(a/r)
• Q4:  = 360° + sin-1(b/r)
For Radians, replace 180° with  and 360° with 2.
Trigonometric Form of Real and
Imaginary Numbers (examples)
Real/Imaginary
Number
Complex
Form
Trig w/
Degrees
Trig w/
Radians
0
0 + 0i
0 cis 0°
0 cis 0
2
2 + 0i
2 cis 0°
2 cis 0
-5
-5 + 0i
5 cis 180°
2 cis 
3i
0 + 3i
3 cis 90°
3 cis (/2)
-4i
0 – 4i
4 cis 270°
4 cis (3/2)
Converting the Trigonometric Form
to Standard Form
r cis 
= r (cos  + i sin )
= (r cos ) + (r sin ) i
Example: 4 cis 30º
= (4 cos 30º) + (4 sin 30º)i
= 4(3)/2 + 4(1/2)i
= 23 + 2i
 3.46 + 2i
Arithmetic with Complex Numbers
Addition & Subtraction

Standard form is very easy ………Trig. form is ugly!
Multiplication & Division

Standard form is ugly…………….Trig. form is easy!
Exponentiation & Roots

Standard form is very ugly….Trig. form is very easy!
Multiplication of Complex Numbers
(Standard Form)
a  bi c  di   ac  bd   ad  bc i
Multiplication of Complex Numbers
(Trigonometric Form)
r cos  i sin    s(cos   i sin  )
 rscos cos   sin  sin   i sin  cos   i cos sin  
 rscos     i sin    
r cis  s cis    rs cis    
Division of Complex Numbers
(Standard Form)
a  bi (ac  bd )  (bc  ad )i

2
2
c  di
c d
Division of Complex Numbers
(Trigonometric Form)
r (cos   i sin  )
s(cos   i sin  )

r (cos   i sin  ) (cos   i sin  )

s(cos   i sin  ) (cos   i sin  )
r  cos  cos   sin  sin   i sin  cos   i cos  sin  
 

s
(cos 2   sin 2  )


r
cos     i sin    
s
r cis  r
 cis    
s cis  s
Powers of Complex Numbers
(Trigonometric Form)
[r cis ]2
[r cis ]3
= (r cis ) • (r cis )
= (r cis )2 • (r cis )
= r2 cis( + )
= r2 cis(2) •(r cis )
= r2 cis 2
= r3 cis 3
Powers of Complex Numbers
(Trigonometric Form)
DeMoivre’s Theorem
(r cis
n
)
=
n
r
cis (n)
Roots of Complex Numbers
An nth root of a number (a+bi) is any solution to
the equation …
xn = a+bi
Roots of Complex Numbers
Examples

The two 2nd roots of 9 are …


32 = 9
and
(-3)2 = 9
and
(-5i)2 = -25
The two 2nd roots of -25 are …


3 and -3, because:
5i and -5i, because:
(5i)2 = -25
The two 2nd roots of 16i are …

22 + 22i and -22 - 22i
because (22 + 22i)2 = 16i and
(-22 - 22i)2 = 16i
Roots of Complex Numbers
Example:
Find all of the
 x4
th
4
roots of 16.
= 16
 x4 – 16 = 0
 (x2 + 4)(x2 – 4) = 0
 (x + 2i)(x – 2i)(x + 2)(x – 2) = 0
 x = ±2i or ±2
Roots of Complex Numbers
In general, there are always …
n “nth roots” of any complex number
Roots of Complex Numbers
One more example …
3

8 cis 75
Using
DeMoivre’s
Theorem
Let k = 0, 1, & 2

 8 cis 75


1
3


 8 cis 75  360 k
 75  360 k 

 2 cis 
3






3
 2 cis 25  120 k
 2 cis 25 , 2 cis 145 , 2 cis 265

1

NOTE: If you let k = 3, you get 2cis385 which is equivalent to 2cis25.


Roots of Complex Numbers
The n nth roots of the complex number r(cos  + i sin ) are …
 

360 
360 
  i sin   k 

r cos  k 
n 
n 
n
 n
1
n
where k  0, 1, 2, 3, 4, ..., n  1
Roots of Complex Numbers
The n nth roots of the complex number r cis  are …
   360 k 

r cis 
n


1
n
or
   2k 
r cis 

 n 
1
n
where k  0, 1, 2, 3, 4, ..., n  1
Summary of (r cis ) w/ r = 1
cis Acis B  cis A  B
cis A
 cis  A  B 
cis B
cis A
n
 cis nA
Does this
remind you
of something?
x a x b  x a b
xa
a b

x
xb
x 
a b
 x ab
Euler’s Formula
i
e  cos  i sin 
Note:  must be expressed in radians.
Therefore, the complex number …
a  bi  r (cos  i sin  )
r = |a + bi|
 r cis 
cos  = a/r
 re i
sin  = b/r
Results of Euler’s Formula
i
e  1

This gives a relationship
between the 4 most
common constants in
mathematics!
i
e 1  0
Results of Euler’s Formula
e
i

2
 i



ii is a real number!

i
 i2 
 e   ii
 
 
e


2
i
i
i  0.2078795763...
i
Results of Euler’s Formula
e e
2
 ix
e e
2
 ix
ix
ix

cos x

sin x