Download Objective - To simplify expressions by combining like terms.

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Objective - To simplify expressions by
combining like terms.
Identity Properties
Identity Property of Addition
a0a
Identity remains the same
Zero is called the additive identity
Identity Property of Multiplication
a 1  a
Identity remains the same
One is called the multiplicative identity
Term - numbers and/or variables tied together
by multiplication or division but separated
by addition or subtraction.
How many terms? 6 terms
6x
7x  3y  4abc  2 1k  2
m
Coefficient - the number preceding the variable
in a variable term.
Constants - numerical terms.
Like terms can be combined!
Like Terms
Unlike Terms
7x  3x  10x
7x
3y
5a  4  a  9a
4
3a
6m   m  5m
3x
x2
4ab  3ba  ab
2a 2 b
3ab
x y  5yx  6x y
2
2
2
2
6m n
2mn
2
Combine the following like terms.
1) 3x + 5y + 4x
7x + 5y
2) 4a + 6 - 3a - 2
a +4
3) x + 3y + 2x + 4y - z
3x + 7y - z
4) 5x 2  4x  3x 2  x 2  6x
9x 2  10x
Find the perimeter of the figures below in
terms of x.
3a
1) 2x
2)
x4
2a
5a
4a 3a
3x  1
7a
P  2x  (x  4)  (3x  1)
P  6x  3
P  5a  3a  2a  4a  3a  7a
P  24a
Simplify each variable expression.
1) 7(x + 4) + 2x
4) 3(b - 2) + 6b
7x + 28 + 2x
9x + 28
3b - 6 + 6b
9b - 6
2) 5x + 3(x + 1)
5x + 3x + 3
5) 2(3m + 1) - 4m
6m + 2 - 4m
8x + 3
3) a + 2(4 + a ) - 1
a + 8 + 2a - 1
2m + 2
6) 3(k + m) + 5(k + 2m)
3k + 3m + 5k + 10m
3a + 7
8k + 13m
Find the perimeter of the figures below in
terms of x.
2(x  1)
1)
2) x
x
4x  1
2  3x  4 
x
2(x  1)
x
P  2  4x  1  2  2  3x  4 
P  4(x)  2  2(x  1)
P  8x  2  4  3x  4 
P  4x  4(x  1)
P  4x  4x  4
P  8x  4
P  8x  2  12x  16
P  20x  18
Simplify each expression below. Then evaluate
if a = 2 and b = 3.
1) 3a 2  b
3) 4b  2(2a  1)
3  22  3
4  3  2(2  2  1)
12  2(4  1)
3 4  3
12  2(3)
12  3
12  6  18
15
2) a 2 b  ab 2
4) 5ab  a 2
2
2
2
2 3 23
523 2
30  4
43 29
12  18
26
30
Related documents