Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
The 13th International Offshore and Polar Engineering Conference ISOPE-2003, Hawaii, May25-30, 2003 Modeling of Oscillating Flow Past a Vertical Plate Spyros A. Kinnas, Yi-Hsiang Yu, Hanseong Lee, Karan Kakar Ocean Engineering Group, Department of Civil Engineering The University of Texas at Austin, Austin, TX, USA Overview Introduction Governing Equations, Boundary Conditions and Numerical Formulation. Comparison of results from the 2D unsteady Euler, Navier-Stokes Solvers with measurements. Visualization of separated flow field. Summary and future work. Introduction Motivation & Objectives Develop and validate a method for the prediction of the effects of bilge keels on FPSO Hull motion. Understand the physics of the unsteady separated flow about the bilge keels of a hull subject to roll motions, and predict the corresponding hydrodynamic coefficients. Motivation & Objectives In this work, we apply and validate our model to a bilge keel (vertical plate) subject to horizontal sinusoidal inflow. Literature Review Numerical Work: - Gentaz et al. 1997 Korpus and Falzarano 1997 Vassalos et al. 2000 Yeung et al. 1992, 1996, 1998, 2000, 2002 Experiments on Vertical Plate: -Keulegan and Carpenter 1958 -Sarpkaya and O’Keefe 1995 Numerical Formulation Governing Equation Non-Dimensional Navier-Stokes equations U=-U m Cos( Plate 1 U F G Q KC t x y u u 2 1 2u / x U , F , v uv Re u / y v / x uv 1 u / y v / x p x f x G , Q , p y f v Re 2v / y y 2 KC: Keulegan-Carpenter number, KC Re: Reynolds number, Re U m h 2 t) T U mT h h GRID FOR OSCILLATING FLOW PAST A FLAT PLATE Direction of oscillating flow Top u 0, y v 0, p 0 y Inflow Outflow u U m cos(t ) v 0, u U m cos(t ) 2 p 0 x 2 v 0, Plate v p u 0, 0, 0 x x Bottom u 0, y v 0, p 0 y Grid size: 201x101 Domain size: -8 to 8 in x-direction and 0 to 8 in y-direction Um, T: Amplitude, and period of oscillating flow h: height of the plate 2 p 0 x 2 Numerical Method Finite Volume Method U Sij ( Fdy Gdx) QSij where Sij is the area of the cell t edges Ni’s Lax-Wendroff Method for time n 2 U (t )2 U n Ui j , t 2 t i j t i j 2 n Uinj1 n 1 n U1 U1 c A , B ,C , D ( U1 )cn Artificial dissipation (viscosity) ~ only in the case of Euler solver U1n 1 U1n c A B C D ( U1 )cn t (2 4 ) 2 2 (ii U1n jj U1n ), 4 4 ( iiii U1n jjjj U1n ) SIMPLE Method for pressure correction Euler and Navier-Stokes Solver Choi & Kinnas 2000, Choi PhD thesis 2000 -Development of Euler Solver and Navier-Stokes solver. Kakar MS thesis 2002 - Application of unsteady 2D Euler solver of flow over bilge keels for FPSO hull motion. Euler Solver ~ Applied artificial viscosity Navier-Stokes Solver ~ Viscous terms Force Calculation on the plate Morison’s equation as follows [Sarpkaya and O’Keefe (1995)] 2 Fˆ 2 2 Cd cos cos Cm sin 2 K hwU m 3 2 Fˆ ( ) cos Cd d Drag coefficient 2 0 4 hwU m Cm 2 KC 3 2 0 Fˆ ( )sin d Inertia coefficient 2 hwU m Results Convergence Study At KC=1 Comparison of different numbers of grid in vertical direction The Convergence study of different numbers of grid in vertical direction (log scale) 200x050 2 1.75 200x050 200x075 200x100 200x150 15 grid on the plate surface grid on the plate surface grid on the plate surface grid on the plate surface 1.5 1 0.75 0.5 0.25 0 -2 -1 0 1 2 200x050 0.06 200x075 2 10 0.1 0.09 0.08 0.07 1.25 1.75 0.05 1.5 1.25 1 5 0.04 0.75 0.5 0.25 0 -2 -1 0 0 1 2 200x100 2 Error Non-Dimensional Force, F/ U 2 H 2 20 10 15 20 30 0.03 1.75 1.5 -5 200x075 0.02 1.25 1 0.75 0.5 -10 0.25 0 -2 -1 2 -15 0 1 2 y = -2.3x + 8. (in log scale) 200x150 200x100 1.75 0.01 1.5 1.25 -20 1 0 0.25 0.5 Time Period 0.75 1 0.75 10000 0.5 0 -2 12500 15000 Numbers of Grid 0.25 -1 0 1 2 17500 20000 Convergence Study At KC=1 Comparison of different size of time step with KC=1 Comparison of different numbers of grid in horizontal direction 20 dT=0.001 dT=0.0005 15 2 Non-Dimensional Force, F/ U H 15 2 250x100 200x100 100x100 2 Non-Dimensional Force, F/ U H 2 20 10 5 0 -5 -10 -15 -20 0 0.25 0.5 Time Period 0.75 1 10 5 0 -5 -10 -15 -20 0 0.25 0.5 Time 0.75 1 Force History comparison Force over 1 time period acting on flat plate --- using Euler solver and Navier-Stokes solver 15 2 Non-Dimensional Force, F/ U H 2 20 Navier-Stokes Solver Euler Solver 10 5 0 -5 -10 -15 -20 0 0.25 0.5 Time Period 0.75 1 Drag coefficient for a range of KC (0.5 < KC < 10) 30 Euler Navier-Stokes Sarpkaya(1995) 25 Cd 20 15 10 5 0 2 4 Keulegan-Carpenter Number 6 8 10 Inertia coefficient for a range of KC (0.5 < KC < 10) 4 3.75 3.5 3.25 3 Euler Navier-Stokes Sarpkaya(1995) 2.75 2.5 Cm 2.25 2 1.75 1.5 1.25 1 0.75 0.5 0.25 0 1 2 3 4 Keulegan-Carpenter Number 5 6 7 8 910 Streamline & vorticity contour at 0*T/4 for KC=1 2 2 ES u = -U m 1.8 30.00 27.00 24.00 21.00 18.00 15.00 12.00 9.00 6.00 3.00 0.00 -3.00 -6.00 -9.00 -12.00 -15.00 -18.00 -21.00 -24.00 -27.00 -30.00 1.5 Y 1.25 1 0.75 0.5 0.25 0 -1 -0.5 0 0.5 NS u = -U m 30.00 27.00 24.00 21.00 18.00 15.00 12.00 9.00 6.00 3.00 0.00 -3.00 -6.00 -9.00 -12.00 -15.00 -18.00 -21.00 -24.00 -27.00 -30.00 1.6 1.4 1.2 Y 1.75 1 0.8 0.6 0.4 0.2 0 -1 1 -0.5 0 0.5 1 X X Streamline & vorticity contour at 1*T/4 for KC=1 2 1.8 ES u=0 30.00 27.00 24.00 21.00 18.00 15.00 12.00 9.00 6.00 3.00 0.00 -3.00 -6.00 -9.00 -12.00 -15.00 -18.00 -21.00 -24.00 -27.00 -30.00 1.5 Y 1.25 1 0.75 0.5 0.25 0 -1 -0.5 0 X 0.5 1 NS u=0 30.00 27.00 24.00 21.00 18.00 15.00 12.00 9.00 6.00 3.00 0.00 -3.00 -6.00 -9.00 -12.00 -15.00 -18.00 -21.00 -24.00 -27.00 -30.00 1.6 1.4 1.2 Y 1.75 2 1 0.8 0.6 0.4 0.2 0 -1 -0.5 0 X 0.5 1 Streamline & vorticity contour at 2*T/4 for KC=1 2 ES u = Um 1.8 30.00 27.00 24.00 21.00 18.00 15.00 12.00 9.00 6.00 3.00 0.00 -3.00 -6.00 -9.00 -12.00 -15.00 -18.00 -21.00 -24.00 -27.00 -30.00 1.6 1.4 Y 1.2 1 0.8 0.6 0.4 0.2 0 -1 -0.5 0 0.5 u = Um NS 30.00 27.00 24.00 21.00 18.00 15.00 12.00 9.00 6.00 3.00 0.00 -3.00 -6.00 -9.00 -12.00 -15.00 -18.00 -21.00 -24.00 -27.00 -30.00 1.6 1.4 1.2 Y 1.8 2 1 0.8 0.6 0.4 0.2 0 -1 1 -0.5 X 0 0.5 1 X Streamline & vorticity contour at 3*T/4 for KC=1 2 1.8 ES u=0 30.00 27.00 24.00 21.00 18.00 15.00 12.00 9.00 6.00 3.00 0.00 -3.00 -6.00 -9.00 -12.00 -15.00 -18.00 -21.00 -24.00 -27.00 -30.00 1.6 1.4 Y 1.2 1 0.8 0.6 0.4 0.2 0 -1 -0.5 0 X 0.5 1 NS u=0 30.00 27.00 24.00 21.00 18.00 15.00 12.00 9.00 6.00 3.00 0.00 -3.00 -6.00 -9.00 -12.00 -15.00 -18.00 -21.00 -24.00 -27.00 -30.00 1.6 1.4 1.2 Y 1.8 2 1 0.8 0.6 0.4 0.2 0 -1 -0.5 0 X 0.5 1 KC=1 KC=10 Summary A finite volume method was applied to the solution of oscillating flow around a vertical flat plate. The same plate and tunnel dimensions as in the experiment of Sarpkaya and O'Keefe have been used. It was found, that either the Euler or the NavierStokes solver produced force coefficients and separated flow fields which were close to each other and also close to the measurements, especially for lower values of the KeuleganCarpenter number. Summary For higher KC numbers, the viscous terms start to be more important, and the effects of turbulence may need to be taken into account. The Euler solver has already been extended in the case of FPSO hull sections, with and without bilge keels, and some preliminary results have been presented in Kinnas, et al., 12th Offshore Symposium, Texas section of the SNAME, 2003. Future Work Further investigations with different Re numbers and KC numbers. Continue with the extension in the case of FPSO hull sections to study the effects of bilge keels. The End