Download 3.1 Using and Expressing Measurements - Falcon Science

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
3.1
Scientific
Using and
Notation
Expressing
& Significant
Measurements
Figures Notes
>
1
Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.
3.1 Using and Expressing Measurements >
Scientific Notation
• A *measurement is a quantity that
has both a number and a unit.
In scientific notation, a given
number is written as the product of
two numbers = a coefficient x 10n
*n = exponent
Example:
602,000,000,000,000,000,000,000
 6.02 x 1023
2
3.1 Using and Expressing Measurements > Scientific Notation
How to Write in Scientific Notation
If the coefficient > 10
Decimal moves to the left
# spaces = n  +
If the coefficient < 1
Decimal moves to the right
# spaces = n  -
6,300,000. = 6.3 x 106
0.000 008 = 8 x 10-6
94,700. = 9.47 x 104
0.00736 = 7.36 x 10-3
3
Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.
3.1 Using and Expressing Measurements >
Practice Problems #1:
Write the following in scientific notation.
①
②
③
④
⑤
⑥
3,400 =
101,000 =
45.01 =
0.000023 =
0.010 =
1,000,000 =
***DO PRACTICE PROBLEMS ON THE BOARD***
4
Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.
3.1 Using and Expressing Measurements >
***REMEMBER***
Move the decimal point until you
have 1 WHOLE NUMBER to
the LEFT OF DECIMAL POINT!
5
Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.
3.1 Using and Expressing Measurements > Scientific Notation
Multiplication and Division
To multiply: multiply the coefficients and add the n.
(3 x 104) x (2 x 102) = (3 x 2) x 104+2 = 6 x 106
(2.1 x 103) x (4.0 x 10–7) = (2.1 x 4.0) x 103+(–7) = 8.4 x 10–4
To divide: divide the coefficients and subtract the
n(numerator – denominator).
3.0 x 105
=
2
6.0 x 10
6
3.0
6.0
( )
x 105–2 = 0.5 x 103
= 5.0 x 102
3.1 Using and Expressing Measurements >
Practice Problems #2:
Solve the following problems and write your answers in
scientific notation.
①
②
③
④
⑤
(8.0 x 10–2) x (7.0 x 10–5) =
(6.6 x 106)  (2.2 x 102) =
(5.0 x 106)  (2.0 x 104) =
(3.0 x 10–3) x (2.5 x 10–4) =
(8.8 x 10–2) x (2.5 x 103) =
***DO PRACTICE PROBLEMS ON THE BOARD***
7
Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.
3.1 Using and Expressing Measurements > Significant Figures
*Significant Figures
• The significant figures in a measurement
include all of the digits that are known, plus
a last digit that is estimated.
8
3.1 Using and Expressing Measurements > Significant Figures
Rules of Significant Figures
1. Every nonzero digit is significant.
24.7 m
0.743 m
714 m
2. Zeros appearing between nonzero digits are
significant.
7003 m
40.79 m
1.503 m
9
3.1 Using and Expressing Measurements > Significant Figures
Determining Significant Figures in Measurements
3. All zeros on the left are not significant. To
eliminate, write the number in scientific notation.
0.0071 m
= 7.1 x 10-3 m
0.42 m
= 4.2 x 10-1 m
0.000 099 m = 9.9 x 10-5 m
4. To be significant, Zeros must be after a number
and after the decimal point.
43.00 m
1.010 m
9.000 m
10
Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.
3.1 Using and Expressing Measurements > Significant Figures
Determining Significant Figures in Measurements
5. Zeros in front of the decimal point are not
significant.
300 m
7000 m
27,210 m
If zeros were exact measurements, then they’re
significant. Write the value in scientific
notation.
300 m =
3.00 x 102 m
11
Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.
3.1 Using and Expressing Measurements >
Practice Problems #3:
Determine the number of sig figs.
①
②
③
④
⑤
⑥
6.571 g 
2500 m 
0.157 kg 
0.0700000 g 
28.0 ml 
30.07 g 
***DO PRACTICE PROBLEMS ON THE BOARD***
12
Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.
3.1 Using and Expressing Measurements > Significant Figures
Significant Figures in Calculations
Rounding
• 1. decide how many significant figures
• 2. round to that many digits
• Note:
• If the next number is <5, digit stays
the same.
• If the next number is ≥5, round up.
For Example:
a. 314.721 m (four) 
b. 0.001 775 m (two) 
c. 8792 m (two) 
13
314.7 m
0.0018
8800
3.147 x 102
m 1.8 x 10-3 m
8.8 x 103 m
3.1 Using and Expressing Measurements > Significant Figures
Significant Figures in Calculations
Multiplication and Division
• Round the answer to the same number of
significant figures as the measurement
with the least number of significant
figures.
7.55 m x 0.34 m = 2.567 m2
= 2.6 m2
14
Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.
3.1 Using and Expressing Measurements >
Practice Problems #4:
Solve the following problems. Write the answers in the
correct number of sig figs and in scientific notation.
①
②
③
④
2.10 m x 0.70 m
0.365 m2  0.0200 m
2.4526 m2  8.4 m
8.3 m x 2.22 m
***DO PRACTICE PROBLEMS ON THE BOARD***
15
Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.
Related documents