Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Binomial Coefficient 0011 0010 1010 1101 0001 0100 1011 1 2 4 Definition of Binomial coefficient 0011 0010 1010 1101 0001 0100 1011 For nonnegative integers n and r with n > r the expansion (read “n above r”) is called a binomial coefficient and is defined by n n! n Cr r r !(n r )! 1 n r 2 4 Evaluating binomial coefficient 0011 0010 1010 1101 0001 0100 1011 • Example n n! n Cr r r !(n r )! 6 6! 6! 6 5 4 3 2 1 15 2 2!(6 2)! 2!4! 2 1 4 3 2 1 1 2 4 8 8! 8! 8! 1 0 0!(8 0)! 0!8! 1 8! Your Turn 0011 0010 1010 1101 0001 0100 1011 1 2 4 n n! n Cr r r !(n r )! Answer 0011 0010 1010 1101 0001 0100 1011 5 5! 5 4 3 2 1 2 1 3 2 1 2 2! 5 2 ! 20 10 2 n n! n Cr r r !(n r )! 1 2 4 Expanding binomial 0011 0010 1010 1101 0001 0100 1011 • The theorem that specifies the expansion of any power (a+b)n of a binomial (a+b) as a certain sum of products 1 2 4 We can easily see the pattern on the x's and the a's. But what about the coefficients? Make a guess and then as we go we'll see how you did. 0011 0010 1010 1101 0001 0100 1011 x a 0 1 x a 1 x a 2 xa x 2 2ax a 2 x a x3 3ax 2 3a 2 x a3 3 x a 4 x a x 4 4ax3 6a 2 x 2 4a 3 x a 4 5 1 2 4 x5 __ ax4 __ a2 x3 __ a3 x2 __ a 4 x a5 Pascal’s Triangle 0011 0010 1010 1101 0001 0100 1011 1 2 4 Pascal’s Triangle 0011 0010 1010 1101 0001 0100 1011 • Each row of the triangle begins with a 1 and ends with a 1. • Each number in the triangle that is not a 1 is the sum of the two numbers directly above it (one to the right and one to the left.) • Numbering the rows of the triangle 0, 1, 2, … starting at the top, the numbers in row n are the coefficients of x n, x n-1y , x n-2y2 , x n-3y3, … y n in the expansion of (x + y)n. 1 2 4 Binomial Theorem 0011 0010 1010 1101 0001 0100 1011 • The a’s start out to the nth power and decrease by 1 in power each term. The b's start out to the 0 power and increase by 1 in power each term. • The binomial coefficients are found by computing the combination symbol. Also the sum of the powers on a and b is n. 1 2 4 a+b)n = nCo an bo +nC1 an-1 b1 +nC2 an-2 b2+…..+nCn a0 bn. ( Example 0011 0010 1010 1101 0001 0100 1011 Write the binomial expansion of (x+y) 7 Solution :Use the binomial theorem . 1 2 A=x; b=y; n=7 (x+7)7=x7+7c1x6y1+7c2x5y2+7c3x4y3+7c4x3y4+7c5x2y5+ 6+ c y7 c xy 7 6 7 7 Answer 4 =x7+7x6y1+21x5y2+35x4y3+35x3y4+21x2y5+7xy6+y7 Question 2 (2x-y) 4 0011 0010 1010 1101 0001 0100 1011 Solution :Use the binomial theorem a=2x; b=-y; n=y = (2x) 4=4c1 (2x) 3y+4c2 (2x) 2y2-4c3 (2x) y3+4c4y4 1 Answer =16x4-32x3y+24x2y2-8xy3+y4 2 4 Question 3 (11)5= (10+1)5 0011 0010 1010 1101 0001 0100 1011 Solution : Use the binomial theorem, to find the value of A=10; b=1; n=5 =105+5c1104 (1) +5c4103 (1)2+5c3 (10)2(1)3+5c4 (10)5-4(1)4+5c5 (1) =100000+5x100000+10x1000+5x10+1x1 Answer =161051. 1 2 4 GENERAL TERM IN A BINOMIAL EXPANSION 0011 0010 1010 1101 0001 0100 1011 • • • • • • • • For n positive numbers we have (a+b)n = nCo an bo +nC1 an-1 b1 +nC2 an-2 b2+…..+nCn a0 bn. According to this formula we have The first term=T1= nCo an b0 The second term =T2= nC1 an-1 b1 The third term=T3= nC2 an-2 b2 So, any individual terms, let’s say the ith term, in a binomial Expansion can be represented like this: Ti=n C(i-1) an-(i-1) b(i-1) 1 2 4 EXAMPLE 0011 0010 1010 1101 0001 0100 1011 1 2 4 MIDDLE TERM 0011 0010 1010 1101 0001 0100 1011 1 2 4 EXAMPLE 0011 0010 1010 1101 0001 0100 1011 • Find the middle term in the expansion of (4x-y) 8 th term =5th term Ti= T5=8C4 (4x)8-4(-y)4 T5= 70(256x4) (y4) T5=17920x4y4 1 2 4 Example 0011 0010 1010 1101 0001 0100 1011 1 2 4 Group Members 0011 0010 1010 1101 0001 0100 1011 • Ayesha Khalid • Hira Shamim Syed • Urooj Arshad Syed 1 2 4 0011 0010 1010 1101 0001 0100 1011 1 2 4