Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Electronics - lectures for Mechanical Engineering part 4a Dr. Bogusław Boratyński Faculty of Microsystems Electronics and Photonics, Wroclaw University of Technology, 2011 Basic literature & figure sources: G. Rizzoni, Fundamentals of Electrical Engineering, McGraw-Hill R.F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley Publ., B.G. Streetman, Solid State Electronic Devices, Prentice-Hall, W. Marciniak, Przyrządy półprzewodnikowe i układy scalone, WNT, A. Świt, J. Pułtorak, Przyrządy półprzewodnikowe, WNT, From the course syllabus SYMBOLS Chapter 4a. FET devices D- Drain Types of FETs G Gate JFET – structure and I-V dependences MOSFET – structure and I-V dependences DC bias and Q-point Small signal equivalent models for L.F. FET amplifier Bipolar Trans. C - Colector B - Base E - Emitter FET D - Drain G - Gate S - Source S- Source Field Effect Transistors (unipolar transistors) P-N Junction FET Insulated gate FET (MOSFET) Field Effect Transitors – electric field controls the flow of carriers Source Gate Drain S Gate oxide Tlenek bramkowy SiO2 G D Gate Al SiO2 Tlenek izolacyjny p+ p+ Si typ - n n-type Si substrate B (Podłoże -"Bulk") Channel (here: p-type, accumulation of holes from the substrate) Channel (here: n-type) Reverse biased gate-to-channel p-n junction All FETs have: very large input resistance Rwe (M) (thus, they get negligible input current) - Input voltage controls the output current MIS capacitor CSiO2 (gate-channel) MIS – metal - insulator - semiconductor or more frequently MOS - metal-oxide (SiO2)-semiconductor Rinput Routput Source: G . Rizzoni, Fundamentals of Electrical Engineering, McGraw-Hill JFET – device structure, dc bias JFET – Junction Field Effect Transistor (n-channel) Source -- Gate Drain + drain bias Bias schematics channel Source: G . Rizzoni, Fundamentals of Electrical Engineering, McGraw-Hill JFET and MESFET JFET – Junction Field Effect Transistor (n-channel) usually – made of Si Source Gate JFET with metal-semiconductor junction (Schottky) MESFET– Metal Semiconductor FET (n - channel), usually GaAs, GaN Drain Substrate - GaAs Channel Source: G . Rizzoni, Fundamentals of Electrical Engineering, McGraw-Hill JFET I-V dependence n-channel JFET Output characteristics: ID – UDS Transfer characteristics: ID – UGS UGS – parameter UDS – const. I – linear region, II – saturation region [mA] ID I 6 II UDS – const. UDS=const UGS=0V 5 4 IDSS 5 ID ~ (UGS ) 2 UGS=-0,5V 4 3 3 2 UGS=-1V 1 UGS=-2V 0 ID [mA] 6 2 4 U ID IDSS 1 GS Up 2 2 6 8 UDS -UGS [V] [V] 1 Up 2 1 UP – pinch-off voltage (JFET parameter) 0 Source: G . Rizzoni, Fundamentals of Electrical Engineering, McGraw-Hill E-MOSFET dc bias, I-V dependence MOSFET normally-OFF ( for UGS =0 no ID ) S Tlenek bramkowy SiO2 G Bias schematics n-channel E-MOSFET (Enhancement mode) ID D Al SiO2 G Tlenek izolacyjny p++ n D B n+p+ Si typ -p n n-type Si substrate UDS UGS S B (Podłoże I-V dependences: output: ID – UDS -"Bulk") Channel (n-type) is created after applying gate bias UGS > UT . Thus, drain current, ID can flow from the source to the drain transfer: ID – UGS UGS – parameter [mA] UDS – const. [mA] ID ID UGS=10V 20 20 UGS=9V β 2 I D UGS UT 2 β – material parameter (depends on CSiO2, μ - mobility) UT – threshold voltage (MOSFET parameter) UDS=const UGS=7V 10 10 UGS=6V UGS=UT 0 5 10 15 UGS UDS [V] 0 UT 5 10 [V] D-MOSFET dc bias, I-V dependence D-MOSFET normally-ON S Tlenek bramkowy SiO2 G Bias schematics n-channel D-MOSFET (Depletion mode) ID D Al SiO2 G Tlenek izolacyjny p++ n n+p+ Si typ - np D B UGS p-type Si substrate UDS B (Podłoże Built-in channel (n-type doped layer) The drain current, ID can flow if UGS =0 Channel pinch-off for UGS = UT S I-V dependences: output ID – UDS -"Bulk") transfer: ID – UGS UGS – parameter UDS – const. [mA] ID [mA] ID UGS=2V 20 20 UGS=1V UDS=const UGS=0V 10 10 UGS=-1V UGS=-2V 0 5 10 15 UDS [V] -3 0 3 UGS [V] MOSFET- symbol and bias summary normally-ON MOSFET D-MOSFET (for UGS =0 ID is possible) ID G normally-OFF MOSFET E-MOSFET ( for UGS =0 no ID ) D ID D UDS B G UDS B UGS P-channel UGS P-channel S S ID G N-channel D ID B G UGS UDS D B N-channel UDS UGS S S B – Bulk terminal (substrate) Small signal equivalent models Elements of the JFET and MOSFET equivalent circuit models are similar: gate voltage controlled current source, drain conductance gd (gds) and the gate-channel capacitance Cgs + C gd Small signal parameters: Transconductance , gm = g21s output conductance , gd = gds gm g ds low freq. did du gs for did du ds U DS const for U GS const Large input resistance (1M) (Rin ∞) - equivalent to open circuit at the input For high frequency signals important elements are gate-source Cgs and gate –drain C gd capacitances high freq. The voltage gain is given: AV g m RD where: gmvg– output current source controlled by the input voltage RD - load resistor included in the drain circuit FET parameters High freq. amplifier Application Type channel power switching BF245B IRF520 JFET MOSFET N N Enhanced Rated parameters Drain-source voltage UDSmax Drain current IDmax Gate-source voltage UGSmax Admission power Prmax 30V 100V 25mA 9.2A -30V ±20V 300mW 60W 1.5 - 4,5V - Typical parameters Pinch-off voltage UP Threshold voltage UT - 2.0 - 4.0V Drain current at UGS=0 IDSS 6 - 15mA 250A Transconductance gm 5mA/V 5A/V On –state resistance Rdson 200 0,27 Common source MOSFET amplifier DC biasing circuit with a voltage devider at the input to stabilise the gate voltage: N-channel E-MOSFET CS Output characteristics: ID – VDS dla VGS – parametr, the load line: VDD = RD ID + VDS operating point-Q: (IDQ, VGSQ, VDSQ) ID = - VDS /RD +VDD /RD The small signal voltage gain : Av g m RD Source: G . Rizzoni, Fundamentals of Electrical Engineering, McGraw-Hill CS MOSFET as a current switch Input control signal UG = UGS Result: rise of output current iD = iload VDD dc power supply Switching circuit requirements: - short switching times (μs). - small ON state voltage: UDSon, since the power dissipated in MOSFET while in ON-state is: P = IDon UDSon MOSFET as a current switch N-channel E-MOSFET 1/RDSon ON OFF RDS on on–state resistance (MOSFET parameter) Source: G . Rizzoni, Fundamentals of Electrical Engineering, McGraw-Hill