Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Engineering 43 Chp 2.3 Single-Loop Circuits Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected] Engineering-43: Engineering Circuit Analysis 1 Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt Single Loop Ckts - Background Using KVL And KCL We Can Write Enough Equations To Analyze ANY Linear Circuit Begin The Study Of Systematic And Efficient Ways Of Using The Fundamental KCL & KVL Circuit Laws • This Time → Single LOOP Circuits Engineering-43: Engineering Circuit Analysis 2 Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt The Power of Loop Analysis Consider this Circuit Alternative Analyses • Write N-1 (5) KCL Equations a 1 2 b 3 6 branches 6 nodes 1 loop – An Easy Choice The Plan for Loop Analysis • Begin With The Simplest One-Loop Circuit • Extend Results To Multiple-Source and Multiple-Resistor Circuits 3 4 f 6 e 5 d ALL ELEMENTS IN SERIES ONLY ONE CURRENT • Determine Only the SINGLE Loop Current Engineering-43: Engineering Circuit Analysis c Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt The Voltage Divider Ohm’s Law VR1 R1it KVL ON THIS LOOP VR2 R2it Ohm’s Law in KVL vt R1it R2it Find i(t) vt i t R1 R2 Engineering-43: Engineering Circuit Analysis 4 Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt Voltage Divider cont. Now Sub i(t) Into Ohm’s Law to Arrive at The Voltage Divider Eqns KVL ON THIS LOOP vt vt VR1 R1 and VR2 R2 R1 R2 R1 R2 Quick Chk → In Turn, Set R1, R2 to 0 vt vt R1 0 VR1 0 0 and V R R2 2 vt 0 R2 0 R2 vt vt R2 0 VR1 R1 v t and V 0 R2 0 R1 0 R1 0 Engineering-43: Engineering Circuit Analysis 5 Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt V-Divider Summary Governing Equations vR1 R1 v(t ) R1 R2 R2 vR2 v(t ) R1 R2 • The Larger the R, The Larger the V-drop Example • Gain/Volume Control – R1 is a Variable Resistor Called A Potentiometer, or “Pot” for Short Engineering-43: Engineering Circuit Analysis 6 Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt Volume Control Example • Case-I → R1 = 90 kΩ R2 V2 v(t ) R1 R2 30k V2 9V 2.25V 90k 30k 9V 30kΩ • Case-II → R1 = 20 kΩ R2 V2 v(t ) R1 R2 30k V2 9V 5.4V 20 k 30 k Engineering-43: Engineering Circuit Analysis 7 Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt Practical Example Power Line Using Voltage Divider Power Dissipated by the Line is a LOSS 8.25% of Pwr Generated is Lost to Line Resistance! * How to Reduce Losses? Engineering-43: Engineering Circuit Analysis 8 Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt Equivalent Circuit The Equivalent Circuit Concept Can Simplify The Analysis Of Circuits • For Example, Consider A Simple Voltage Divider – As Far As The Current Is Concerned Both Circuits Are Equivalent i vS R1 i vS + - R2 i + - vS R1 R2 The One On The Right Has Only One Resistor SERIES Resistors → Engineering-43: Engineering Circuit Analysis 9 R1 R2 R1 R2 Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt R1 R2 Schematic vs. Physical Sometimes, For Practical Construction Reasons, Components That Are Electrically Connected May Be Physically Quite Apart • Each Resistor Pair Below Has the SAME Node-to-Node Series-Equivalent Circuit Engineering-43: Engineering Circuit Analysis 10 Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt CONNECTOR SIDE ILLUSTRATING THE DIFFERENCE BETWEEN PHYSICAL LAYOUT AND ELECTRICAL CONNECTIONS PHYSICAL NODE PHYSICAL NODE SECTION OF 14.4 KB VOICE/DATA MODEM CORRESPONDING POINTS COMPONENT SIDE Engineering-43: Engineering Circuit Analysis 11 Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt Generalization – Multiple Sources – Voltage Rises Are Subtracted From Drops v5 R1 i(t) R2 v4 Apply KVL vR1 v2 v3 vR 2 v4 v5 v1 0 Engineering-43: Engineering Circuit Analysis 12 v3 + - • We Select The Reference Direction To Move Along The Path + - + - 1 + + - Voltage Sources In Series Can Be Algebraically v Added To Form An Equivalent Source v2 v R1 Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt vR2 Multiple-Source Equivalent Collect All SOURCES On One Side v1 v2 v3 v4 v5 vR1 vR 2 v v eq R1 vR 2 R1 The Equivalent Circuit Engineering-43: Engineering Circuit Analysis 13 veq + - R2 Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt Generalization – Mult. Resistors Apply KVL (rise = Σdrops) Now by Ohm’s Law And Define RS Then Voltage Division For Multiple Resistors v R Ri i i Engineering-43: Engineering Circuit Analysis 14 Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt Example Find: I, Vbd, P(30kΩ) Apply KVL & Ohm Solving for I APPLY KVL Vbd TO THIS LOOP Now Vbd Vbd 12 20[k ] I 0 So by KVL Vbd 10V Finally, The 30 kΩ Resistor Power Dissipation P I 2 R (104 A) 2 (30 103 ) 30 104 W 300W Engineering-43: Engineering Circuit Analysis 15 Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt “Inverse” Voltage Divider The Std V-Divider VO R2 VS R1 R2 Inverse Divider R1 VS R1 R2 VO R2 VS + - Example Find VS • Use Inverse Divider R1 R2 VS VO R2 20 220 VS 458.3kV 500 kV 220 Engineering-43: Engineering Circuit Analysis 16 Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt R2 VO Student Exercise Lets Turn on the Lights for 5-7 min Students are invited to Analyze the following Ckt Determine the • CURRENT, I • Vbd + Vbd - Engineering-43: Engineering Circuit Analysis 17 Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt Examples Find: I, Vbd from Exercise APPLY KVL TO THIS LOOP • Use KVL and Ohm’s Law 6 80kI 12 40kI 0 I 0.05mA Vbd 40kI 12V 0 Vbd 10V Find VS • V20k Divider 20 3V Vs 25 15 20 • The VS INVERSE Divider Engineering-43: Engineering Circuit Analysis 18 3V 25 15 20 VS 3 9V 20 Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt When In Doubt → ReDraw From The Last Diagram It Was Not Immediately Obvious That This Was a V-Divider Situation • UnTangle/Redraw at Right 20 Vad VS 3V 20 15 25 or 20 15 25 20 15 25 VS Vad 3V 9V 20 20 Engineering-43: Engineering Circuit Analysis 19 Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt Example 2 b Find VS 12V • Vx, Vab • P3Vx VS – The Power Absorbed or Supplied By the Dependent Source Vab 12V 2V 0 Vab 10V Engineering-43: Engineering Circuit Analysis 20 - 4V 4k 1 a +I VX 3 • Passive Sign Conven. 1 12 4 3VX VX 0 VX 2V 2 Vab 4 3VX 0 Vab 10V Vab VS VX 0 + 3Vx Find DS Power Apply KVL 3 Vab P( 3V X ) 3V X I • Ohm’s Law I 4V 1mA 4k • Then Pwr ABSORBED P(3VX ) 3 2[V ] 1[mA] 6mW Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt Example Find: VDA, VCD, I 20k A 12V 9V B + - I + - • Apply KVL & Ohm 2 E -12 20k*I 9 30k*I 10k*I 0 1 3V I 0.05mA 60k VDA 12 10k * I 0 VDA 11.5V 1 2 VCD 30k * I 30k 0.05mA 1.5V 21 30k D 10k • Ohm’s Law Engineering-43: Engineering Circuit Analysis C Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt WhiteBoard Work Let’s Work This Problem 8 k 120 mA 4 k 4 k Io Engineering-43: Engineering Circuit Analysis 22 Bruce Mayer, PE [email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt