Download WATKINS - Chabot College

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Engineering 43
Chp 2.3
Single-Loop
Circuits
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
Engineering-43: Engineering Circuit Analysis
1
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
Single Loop Ckts - Background
 Using KVL And KCL We Can Write
Enough Equations To Analyze ANY
Linear Circuit
 Begin The Study Of Systematic And
Efficient Ways Of Using The
Fundamental KCL & KVL Circuit Laws
• This Time →
Single LOOP Circuits
Engineering-43: Engineering Circuit Analysis
2
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
The Power of Loop Analysis
 Consider this
Circuit
 Alternative Analyses
• Write N-1 (5) KCL Equations
a
1
2
b
3
6 branches
6 nodes
1 loop
– An Easy Choice
 The Plan for Loop Analysis
• Begin With The Simplest One-Loop Circuit
• Extend Results To Multiple-Source
and Multiple-Resistor Circuits
3
4
f
6
e
5
d
ALL ELEMENTS IN SERIES
ONLY ONE CURRENT
• Determine Only the SINGLE Loop Current
Engineering-43: Engineering Circuit Analysis
c
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
The Voltage Divider
 Ohm’s Law
VR1  R1it 
KVL ON
THIS
LOOP
VR2  R2it 
 Ohm’s Law in KVL
vt   R1it   R2it 
 Find i(t)
vt 
i t  
R1  R2
Engineering-43: Engineering Circuit Analysis
4
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
Voltage Divider cont.
 Now Sub i(t) Into Ohm’s
Law to Arrive at The
Voltage Divider Eqns
KVL ON
THIS
LOOP
 vt  
 vt  
VR1  R1 
 and VR2  R2 

 R1  R2 
 R1  R2 
 Quick Chk → In Turn, Set R1, R2 to 0
 vt  
 vt  
R1  0  VR1  0

0
and
V

R
R2
2

  vt 
 0  R2 
 0  R2 
 vt  
 vt  


R2  0  VR1  R1 

v
t
and
V

0
R2


0
 R1  0 
 R1  0 
Engineering-43: Engineering Circuit Analysis
5


Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
V-Divider Summary
 Governing Equations
vR1 
R1
v(t )
R1  R2
R2
vR2 
v(t )
R1  R2
• The Larger the R, The Larger the V-drop
 Example
• Gain/Volume Control
– R1 is a Variable
Resistor Called A
Potentiometer, or
“Pot” for Short
Engineering-43: Engineering Circuit Analysis
6
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
Volume Control Example
• Case-I → R1 = 90 kΩ
 R2 
V2  
 v(t )
 R1  R2 
30k


V2  
9V  2.25V

 90k  30k 
9V
30kΩ
• Case-II → R1 = 20 kΩ
 R2 
V2  
 v(t )
 R1  R2 
30k


V2  
9V  5.4V
20
k


30
k



Engineering-43: Engineering Circuit Analysis
7
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
Practical Example  Power Line
 Using Voltage Divider
 Power Dissipated by the Line is a LOSS
8.25% of Pwr Generated is
Lost to Line Resistance!
* How to Reduce Losses?
Engineering-43: Engineering Circuit Analysis
8
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
Equivalent Circuit
 The Equivalent Circuit Concept Can
Simplify The Analysis Of Circuits
• For Example, Consider A Simple
Voltage Divider
– As Far As The
Current Is
Concerned Both
Circuits Are
Equivalent
i
vS
R1
i
vS
+
-
R2
i
+
-
vS
R1  R2
 The One On The Right Has Only One Resistor
SERIES Resistors →
Engineering-43: Engineering Circuit Analysis
9
R1
R2

R1  R2
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
R1  R2
Schematic vs. Physical
 Sometimes, For Practical Construction
Reasons, Components That Are Electrically
Connected May Be Physically Quite Apart
• Each Resistor Pair Below Has the SAME
Node-to-Node Series-Equivalent Circuit
Engineering-43: Engineering Circuit Analysis
10
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
CONNECTOR SIDE
ILLUSTRATING THE DIFFERENCE
BETWEEN PHYSICAL LAYOUT AND
ELECTRICAL CONNECTIONS
PHYSICAL NODE
PHYSICAL NODE
SECTION OF 14.4 KB VOICE/DATA MODEM
CORRESPONDING POINTS
COMPONENT SIDE
Engineering-43: Engineering Circuit Analysis
11
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
Generalization – Multiple Sources
– Voltage Rises Are
Subtracted From Drops

v5
R1
i(t)

R2

 v4 
 Apply KVL
vR1  v2  v3  vR 2  v4  v5  v1  0
Engineering-43: Engineering Circuit Analysis
12

v3

+ -
• We Select The Reference
Direction To Move Along
The Path
+
-
+
-
1
+ +
-
 Voltage Sources In Series

Can Be Algebraically
v
Added To Form An

Equivalent Source
 v2 
 v R1 
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
vR2

Multiple-Source Equivalent
 Collect All SOURCES On One Side
v1  v2  v3  v4  v5   vR1  vR 2
v   v
eq
R1
 vR 2
R1
 The Equivalent
Circuit
Engineering-43: Engineering Circuit Analysis
13
veq
+
-
R2
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
Generalization – Mult. Resistors
 Apply KVL (rise = Σdrops)
 Now by Ohm’s Law
 And Define RS
 Then Voltage Division For Multiple Resistors
v R  Ri i 
i
Engineering-43: Engineering Circuit Analysis
14
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
Example
 Find: I, Vbd, P(30kΩ)
 Apply KVL & Ohm
 Solving for I

APPLY KVL
Vbd
TO
THIS LOOP

 Now Vbd
Vbd  12  20[k ] I  0
So by KVL  Vbd  10V
 Finally, The 30 kΩ Resistor Power Dissipation
P  I 2 R  (104 A) 2 (30 103 )  30 104 W  300W
Engineering-43: Engineering Circuit Analysis
15
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
“Inverse” Voltage Divider

 The Std V-Divider
VO 
R2
VS
R1  R2
Inverse
Divider
R1
VS 
R1  R2
VO
R2
VS
+
-
 Example Find VS
• Use Inverse Divider
R1  R2
VS 
VO
R2
20  220
VS 
458.3kV  500 kV
220
Engineering-43: Engineering Circuit Analysis
16
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
R2
VO

Student Exercise
 Lets Turn on the Lights for 5-7 min
 Students are invited to Analyze the
following Ckt
 Determine the
• CURRENT, I
• Vbd
+
Vbd
-
Engineering-43: Engineering Circuit Analysis
17
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
Examples
 Find: I, Vbd from Exercise
APPLY KVL
TO THIS LOOP
• Use KVL and Ohm’s Law
 6  80kI 12  40kI  0  I  0.05mA
Vbd   40kI    12V   0  Vbd  10V
 Find VS
• V20k Divider
20
3V  Vs
25  15  20
• The VS INVERSE
Divider
Engineering-43: Engineering Circuit Analysis
18

3V

25  15  20
VS 
3  9V
20
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
When In Doubt → ReDraw
 From The Last Diagram
It Was Not Immediately
Obvious That This Was
a V-Divider Situation
• UnTangle/Redraw at Right
20
Vad 
VS  3V
20  15  25
or
20  15  25
20  15  25
VS 
Vad 
3V  9V
20
20
Engineering-43: Engineering Circuit Analysis
19
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt

Example
2
b
 Find
VS 12V
• Vx, Vab
• P3Vx
VS
– The Power Absorbed
or Supplied By the
Dependent Source
Vab  12V  2V  0  Vab  10V
Engineering-43: Engineering Circuit Analysis
20
-
 4V 
4k
1
a
+I

VX

3
• Passive Sign Conven.
1 12  4  3VX  VX  0  VX  2V
2 Vab  4  3VX  0  Vab  10V
Vab  VS  VX  0
+
3Vx
 Find DS Power
 Apply KVL
3

Vab
P( 3V X )  3V X I
• Ohm’s Law

I
4V
 1mA
4k
• Then Pwr ABSORBED
P(3VX )  3  2[V ]  1[mA]  6mW
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
Example
 Find: VDA, VCD, I
20k
A
12V
9V
B
+ -
I
+
-
• Apply KVL & Ohm
2
E
-12  20k*I  9  30k*I  10k*I  0
1
3V
I
 0.05mA
60k
VDA  12 10k * I  0  VDA  11.5V
1
2
VCD  30k * I  30k  0.05mA  1.5V
21
30k
D
10k
• Ohm’s Law
Engineering-43: Engineering Circuit Analysis
C
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
WhiteBoard Work
 Let’s Work This Problem
8 k
120 mA
4 k
4 k
Io
Engineering-43: Engineering Circuit Analysis
22
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt
Related documents