Download lecture08

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Resistors in series and in parallel (review)
I
R1
I1
R2
R1
I
V1
I  I1  I 2
I
V2
V
I2
V  V1  V2
Example
R1
R2
1
1
1


Req 15 30
R2
r  2
R1  15
E
R2  30
I ?
1
1 1
 
Req R1 R2
R1
  12V
V  V1  V2
I  I1  I 2
Req  R1  R2
Req  10
r
Req  15  30

R2
12V
I

 0.26 A
R1  R1  r 47
E
r

12V
I

 1.0 A
Req  r 12
10. Kirchhoff’s rules
1) Kirchhoffe’s first rule
(Conservation of charges and junction or current rule)
Example
I1
 I  I
I  I
in
I2
I1=I2+I3
in
I3
I1  5 A
5 A  2 A  I3
I2  2A
I3  3A
I3  ?
I 0
I in  0
I out  0
out
out
0
2) Kirchhoffe’s second rule
(Loop or voltage rule)
   I
n
m
E1 E2
Rm
R1
R2
E3
R3
E4<0
I
V
3) Using Kirchhoffe’s rules
 I  I
out
   I
m
in
n
Rm
For N junctions write N-1 equations
Write equations only for independent loops
Example 1: Determine the currents through the elements of this circuit.
I1
ε2
R1
I3
I2
ε1
• We have 3 different currents
• We have 2 junctions (N=2)
• We have 2 independent loops
R2
R3
We need 3 equations
We can use N -1=1 equation
We can use 2 equations
Example 1 (continuation)
Junction equation:
(Both junction give
the same equation)
Loop equations:
An extra loop equation:
If we add two equations above, we obtain the equation
for the third (big, combined) loop. We do not need this
equation – it is dependent from two previous
Let us use numbers:


1
 24V
2
 12V
R1  5
R2  3
R3  4
I1  I 2  I 3  0
 I R I R
  I R  I R
   I R  I R
1
1
2
3
1
2
1
2
3
1
2
1
2
2
3
We have three equations for three unknowns,
we can solve this system of equations.
I 1  2.8 A
I 2  3.3 A
I 3  0.5 A
I3 flows opposite to
our assumption
3
Example 2:

ε
1
 9.0V
2
 6.0V
E1
I1
R1
 I  I
in
R2
   I
I2
R1  30
R2  15
I ?
 
1

2
2
 I1 R1
 I 2 R2
I1  I 2  I 3
n
E2
I1
ε


I2


1
R1
2
Rm
9.0V  6.0V

0.5 A
30
6.0V

 0.4 A
R2 15
2
9 V
I 3  I 1  I 2  0.9 A
B. Decreases
m
I3
Example 3: In the circuit below, the switch is
initially open. When the switch is closed,
the current through the bottom resistor:
A. Increases
out
C. Stays the same
R
9 V
9 V
R
11. Microscopic picture
L
+
vd
A
For electrons in copper :
drift speed ~ 10-5 - 10-6 m/s
random-motion speed ~ 106 m/s
L  vd t
Q  nALe  neAvd t
Q
I
t
I  neAvd
n – number of electric carriers per unit volume
A – area of cross-section
AL - volume
Example: A copper wire 2.0 mm in diameter, caries 1.0 A. What is the
drift speed of electrons? Assume one electron per atom is free to move.
I  1. 0 A
r  2.0mm / 2  1.0mm
N A  6.02 10 23 mol 1
mmol  63.5 10 3 kg / mol
  8.9 103 kg / m 3
vd  ?
I
vd 
neA
I  neAvd
NA
NA
n

 8.24 10 28 m 3
Vmol mmol / 
A  r 2
I
1.0 A
vd 

neA 8.24 1028 m 3 1.6 1019 C   10 3 m 2

vd  2.4 10 5 m / s

Related documents