Download Slide - Auburn University

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Bounds on Defect Level and
Fault Coverage in Linear Analog
Circuit Testing
Suraj Sindia (I.I.Sc, Bangalore)
Virendra Singh (I.I.Sc, Bangalore)
Vishwani D. Agrawal (Auburn University)
VDAT 2009
Linear Circuits – Quick Recap
Vout
1

Vin 1    R1  R 2  C2  R1C1  s  R1R 2C1C2s 2

Transfer function representation
 -1
s + a k s k

H(s) = K
k=0
 -1
s  + b k s k
λ<µ
k=0
1
VDAT 2009
Circuit Parameters & Transfer Function
Coefficients

f1 and f2

f1
c1
R1

R2
C1

C2
c2
f2
Parameter Space
Maps the parameter
space & coefficient
space.
Linear functions of circuit
parameters
Can be potentially used
to track the parametric
drifts in circuit
parameters
Coefficient Space
Savir, ITC, 2002
2
VDAT 2009
Background of TFC Method
p1
Coefficients as
functions of circuit
parameters
c5
c4
c2
c3
c1
p2
p3
3
VDAT 2009
Closer Look at Coefficients
Hypercube distribution of ck
Legend
y = p2
Γk
p2n(1+ ρ)
Λk
Ξk
p2n
Ω
p2n(1- ρ)
(1-ρ*)p1n
p1n
(1-ρ)p1n
(1+ρ)p1n
(1+ρ*)p1n
x = p1
4
Our Work – “Bounding”
Hypercube distribution of ck

Defect Level:

Probability of a faulty chip
escaping as a fault-free or a
good chip


y = p2
Legend
Γk
p2n(1+ ρ)
Λk
Ξk
Probability of a coefficient
taking a value in the region
Λk
p2n
Fault Coverage:

Ω
Percentage of faults that a
given test method can
uncover from set of all
possible faults

p2n(1- ρ)
Probability of a coefficient
taking a value in the region
Γk
p1n
(1-ρ*)p1n
(1-ρ)p1n
(1+ρ*)p1n
x = p1
(1+ρ)p1n
5
VDAT 2009
Our Work – “Bounding”

Assume an appropriate p.d.f over the region
of drift of p1,p2 Є [0,∞]




We choose Gaussian
Relevant for most of passive devices [R,L,C]
Evaluate the joint Gaussian distribution over
these regions
Validate the bounds against number of
components and coefficient of uncertainty(є)
for common circuits –

Eg.: RC Ladder network
6
VDAT 2009
Equations – Two Parameter Case
 ( x  p1n )2 ( y  p2 n )2 
f p1, p 2 ( x, y) 
exp 


2
2
2
2
2

2



1
DLCk   f p1, p 2 ( x, y )dxdy
k
FCCk   f p1, p 2 ( x, y )dxdy
k
7
VDAT 2009
Closed Form Expressions –
N parameters
DL  DLCk
  
 Q 
  
  
 Q 
  
FC  FCCk



Q







Q







N
       
 
Q

Q
  


   

 
 N
  pin
  Q 
 i 1  
    
   Q 
   






Q




N 1



N

 u 2 
1
exp 
Where, Q( x) 
 du
2
2 x


8
VDAT 2009
Results – Plots of Expressions
DL v/s number of circuit
parameters
DL v/s є
9
VDAT 2009
Simulated Plots for RC Ladder
Defect Level
10
VDAT 2009
Simulated Plots for RC Ladder
Fault Coverage
11
VDAT 2009
Simulation-Optimization Tradeoff
Tradeoff point
12
VDAT 2009
Defect Level on Benchmarks
Circuit
Source
Component Count
Transistor
Opamp
Resistor
Defect Level(%)
Capacitor
Total(N)
Computed
Simulated
Operational
Amplifier #1
ITC ’97a
8
-
2
1
11
6.51
5.69
Con. Time State
Variable filter
ITC ’97b
-
3
7
2
12
5.89
5.23
Operational
Amplifier #2
ITC ’97c
10
-
-
1
11
6.51
5.69
Leapfrog Filter
ITC ’97d
-
6
13
4
23
1.38
1.33
Digital-to-Analog
Converter
ITC ’97e
16
1
17
1
35
0.21
0.2
Differential Amplifier
SFAa
4
-
5
-
9
7.72
6.43
-
1
3
-
4
7.78
3.75
Comparator
SFAb
Single Stage Amplifier
SFAc
1
-
5
-
6
8.73
6.17
Elliptical filter
SFAd
-
3
15
7
25
1.02
0.99
Low-Pass Filter
Lucent1
-
1
3
1
5
8.51
5.30
13
VDAT 2009
Fault Coverage on Benchmarks
Circuit
Source
Component Count
Transistor
Opamp
Resistor
Fault Coverage(%)
Capacitor
Total(N)
Computed
Simulated
Operational
Amplifier #1
ITC ’97a
8
-
2
1
11
84.78
85.31
Con. Time State
Variable filter
ITC ’97b
-
3
7
2
12
87.17
87.66
Operational
Amplifier #2
ITC ’97c
10
-
-
1
11
Leapfrog Filter
ITC ’97d
-
6
13
4
23
98.05
98.19
Digital-to-Analog
Converter
ITC ’97e
16
1
17
1
35
99.75
99.78
Differential Amplifier
SFAa
4
-
5
-
9
78.75
79.18
-
1
3
-
4
Comparator
SFAb
Single Stage Amplifier
SFAc
1
-
5
-
6
Elliptical filter
SFAd
-
3
15
7
25
Low-Pass Filter
Lucent1
-
1
3
1
5
84.78
49.57
64.19
98.61
57.50
85.31
50.21
64.87
98.72
58.18
14
VDAT 2009
Conclusion


Closed form expressions for bounds on
Defect Level and Fault Coverage in TFC
based test of analog circuits
Higher component count leads to



Smaller defect level
Better fault coverage
Strategy for opting between simulation and
non-linear optimization in TFC based test
15
VDAT 2009
Thanks for Your Attention!
Related documents