Download k - Chabot College

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Engineering 43
Chp 2.4
Single Node-Pair
Circuits
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
Engineering-43: Engineering Circuit Analysis
1
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
Single Loop Ckts - Background
 Using KVL And KCL We Can Write
Enough Equations To Analyze Any
Linear Circuit
 Begin The Study Of Systematic and
Efficient Ways Of Using These
Fundamental Circuit Laws
• This Time → Single NODE-PAIR Circuits
Engineering-43: Engineering Circuit Analysis
2
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
Single Node-Pair (SNP) Circuits
OF SINGLE
 EXAMPLE
SNP Example
 SNP Circuits Are
Characterized By
ALL the Elements
Having The SAME
VOLTAGE Across
Them → They Are In
PARALLEL

NODE-PAI

V

This Element is INACTIVE
V • The Inactive Element

Engineering-43: Engineering Circuit Analysis
3
Has NO Potential Across
it → SHORT Circuited
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
Untangling Reminder
 Nodes Can Take STRANGE Shapes
NODE →
A region of
Constant
Electrical
Potential
Low
Distortion
Power
Amplifier
Engineering-43: Engineering Circuit Analysis
4
e.g.; a group
of connected
WIRES is
ONE Node
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
LOW VOLTAGE POWER SUPPLY FOR CRT - PARTIAL VIEW
SOME PHYSICAL NODES
Engineering-43: Engineering Circuit Analysis
5
COMPONENT SIDE
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
CONNECTION SIDE
The Current Divider
 Basic Circuit
APPLY KCL
 The Current i(t)
Enters The Top
Node And Splits, or
DIVIDES, into the
the Currents
i1(t) and i2(t)
Engineering-43: Engineering Circuit Analysis
6
 Apply KCL at Top
Node
 Use Ohm’s Law to
Replace Currents
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
The Current Divider cont.
 Basic Circuit
Rp
1
it  
vt 
Rp
vt  
 By KCL & Ohm
R1 R2
i t 
R1  R2
 The Current Division
 Define PARALLEL
Resistance
Engineering-43: Engineering Circuit Analysis
7
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
Current Divider Example
 For This Ckt Find:
I1, I2, Vo
 When in doubt…
REDRAW the circuit
to Better Visualize
the Connections
 By I-Divider
Vo  I 2  80kΩ
 24V
2-Legged
Divider is
more
Evident
Engineering-43: Engineering Circuit Analysis
8
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
Real World Example
 Car Stereo and Circuit Model
215mA
 Use I-Divider to Find
Current thru the 4Ω
Speakers
215mA
 Thus the Speaker
Power
 Power Per Speaker
by Joule
Engineering-43: Engineering Circuit Analysis
9
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
Current & Power Example
KCL
 For This Ckt Find:
• I 1, I 2,
• P40k  Power
ABSORBED by
40 kΩ Resistor
 By I-Divider
120
16mA
I1 
120  40
 12mA
 Find I2 by I-Divider
OR KCL
• Choose KCL
Engineering-43: Engineering Circuit Analysis
10
I 2  16mA  I1  0
 I 2  4mA
 The 40k Power by RI2
P40k  12mA 40k
2
 milli   k   milli
P40k  5760mW  5.76W
2
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
Generalization: Multi I-Sources
 Given Single Node-Pair Ckt w/ Multiple Srcs
KCL
 KCL on Top Node:
 Combine Src Terms
To Form Equivalent
Source
Engineering-43: Engineering Circuit Analysis
11
 The Equivalent Ckt
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
I-Source Example
 For This Ckt Find
Vo, and the
Power Supplied
by the I-Srcs 10mA
6k 
3k 
15mA

VO

 Combine Srcs to
 Vo by Ohm’s Law
Yield Equivalent Ckt V  R I  2k 5mA   10V
o
p Src


Use
PASSIVE
SIGN
R
V
Convention for Power
p

5mA
Rp 
6k * 3k
 2 k
6k  3k
Engineering-43: Engineering Circuit Analysis
12
O
P10m  10V 10mA   100mW
P15m  10V  15mA 
 150mW
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
Generalization: Multi Resistors
 Given Single Node-Pair Ckt w/ Multiple R’s
vt   R p io t  

iK t   vt  RK 
iK t  
Rp
RK
io t 
 KCL on Top Node:
 The Equivalent
Resistance & v(t)
N
1
1

R p j 1 R j
vt   io t   R p
Engineering-43: Engineering Circuit Analysis
13
Ohm’s Law at
Each Resistor
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
KCL
Multi-R Example
 For This Ckt Find
i1, and the
Power Supplied
by the I-Source 8mA
 Find Rp
1
1
1
1



R p 4kΩ 20kΩ 5kΩ
5 1 4
1


20kΩ
2kΩ
 R p  2kΩ
Engineering-43: Engineering Circuit Analysis
14
i1
4k
20k
5k
 Recall the General
Current Divider Eqn
vt   R p io t  

iK t   vt  RK 
iK t  
Rp
RK
io t 
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
Multi-R Example cont.
 Find i1, by Divider
• Take Care with
Passive Sign Conv
2kΩ
8mA   4mA
i1 
4kΩ
 Find v for SingleNode-Pair by Ohm
v  isrc R p
 8mA 2kΩ   16V
 Find Psrc by v•i
Engineering-43: Engineering Circuit Analysis
15
i1
4k
20k
5k
8mA
Psrc  visrc

v

  16V 8mA   128mW
• Note: this time For
Passive Sign
Convention CURRENT
Direction assigned
as POSITIVE
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
Multi-R: Alternative Approach
 Start by
Combining R’s
NOT associated
8mA
with i1
 The Ckt After the
R-Combination
i1
4k
4k
8mA
Engineering-43: Engineering Circuit Analysis
16
20k||5k
i1
4k
20k
5k
 Now Have 1:1 Current
Divider so
4kΩ
i1 
isrc
4kΩ  4kΩ
1
i1  isrc  4mA
2
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
Example: Multi-R, Multi-Isrc SNP
 Given Single Node-Pair Ckt: Find IL
 Soln Game Plan:
Convert The
Problem Into A
Basic CURRENT
DIVIDER By
Combining Sources
And Resistors
Engineering-43: Engineering Circuit Analysis
17
 Combine Sources
• Assume DOWN =
POSITIVE
I S ,eq
I S ,eq  1mA  4mA  2mA
 1mA
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
Multi-R, Multi-Isrc SNP cont.
 Given Single Node-Pair Ckt: Find IL
 Next Combine
Parallel Resistors
 IL by I-Divider
 Then the Equivalent
Circuit →
Engineering-43: Engineering Circuit Analysis
18
Note MINUS Sign
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
I1
6k
6k
I2
C
B
3k
3k
9mA
The SAME Ckt
Can Look
Quite Different
I1  3 99mA   3mA
A
I 2   I1  3mA
I1
B
6k
C
6k
3k
I2
6k
9mA
A
3k
I1
B
C
3k
9mA
3k
6k
A I2
Engineering-43: Engineering Circuit Analysis
19
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
UnTangling Utility
 Redrawing A Circuit May, Sometimes, Help To
Better Visualize The Electrical Connections
B
I1
6k
6k
I1
C
B
3k
I2
9mA
3k
9mA
A
I2
A
6k
6k
3k
C
Engineering-43: Engineering Circuit Analysis
20
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
3k
Another Example
 For This Ckt
Find the I-Src
Power, P20
+
2k
 Alternatives for P
20mA
1
1
1
1



R p 2kΩ 4kΩ 3kΩ
P20  VI  V 20mA 
• By Joule and Energy
Balance
P20   PR j  RP 20mA 
2
21
3k
 Use ||-Resistance
• By vi
Engineering-43: Engineering Circuit Analysis
4k V
_
63 4
12

 R p  kΩ
12kΩ
13
2
P20  12 13 k 20mA 
4800
P20 
mW supplied
13
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
All Done for Today
A Different
Type of
NODE
BRANCHES Connect to NODES
Engineering-43: Engineering Circuit Analysis
22
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
WhiteBoard Work
 Let’s Work This
Problem
Engineering-43: Engineering Circuit Analysis
23
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-02-4_Single_Node-Pair_Ckts.ppt
Related documents