Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
PADFRAME Michael Karagounis Questions & Answers LVDS 1 Question: Do your LVDS circuits meet the specs of the LVDS standard Answer: No, but they are compatible to commercial LVDS circuits 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis LVDS Driver Restrictions • Only Thin-Gates Transistors -> max. voltage 1.2-1.5V Vbp • Maximum output voltage before current source leaves saturation VDD- 250mV 5pF D D M3 • LVDS standard defines a common mode range of 0 – 2.4V for the LVDS receiver M4 TX A commercial LVDS receiver (e.g. FPGA input) is able to process the data signal CMOS driver CMFB 100k Vcm 100k Vofs D M5 5pF 03.11.2009 M6 TX Vbn FE-I4 Review - Padframe - Michael Karagounis Slide 3 LVDS Receiver Restrictions Rail-to-Rail Input stage max. input voltage limited by VDD M11 M12 M9 M13 M14 M15 M10 M17 M14 Option2: M18 OUT IN2 Override Driver Common Mode Voltage I out M1 M2 Option1: To process standard LVDS signal 1.2V +/- 175mV VDD >= 1.375 V M8 IN1 M16 M19 M20 + M3 TX - M4 M5 + M6 M7 M21 RX - M22 Option 3: Tyhach et al., A 90-nm FPGA I/O Buffer Design With 1.6-Gb/s Data Rate for Source-Synchronous System and 300-MHz Clock Rate for External Memory Interface, IEEE JSSC, Sept. 2005 03.11.2009 Use LVDS transceiver chip in test setup FE-I4 Review - Padframe - Michael Karagounis Slide 4 Questions & Answers LVDS 2 Question: Does your receiver reach an intermediate state of high current consumption? ( Is your receiver Fail-Safe?) Answer: No, because we bias the receiver input (Yes it is Fail-Safe) 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis Failsafe-Biasing • bias voltage close to VDD/2 is defined by resistive divider • bias is fed to RX inputs by high ohmic resistors • additional high ohmic resistor connected between inverted input & ground introduces voltage difference @ inputs + RX 60mV - Maxim Application Note 4007, Robust Fail-Safe Biasing for AC-Coupeled Multidrop LVDS Bus, 2007 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis AC Coupled Communication Scheme TX On-Chip RX I out + + TX - RX - approach allows to study AC-coupled communications scheme DC – Balancing can be achieved by sending commands with wrong chip id & complementary data during command data transmission breaks 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis CMOS OUT Self-Biasing of LVDS Receiver START-UP Vbias consequence of power-on sequence: LVDS receiver has to be fully functional before the precise reference circuit is available LVDS receiver has to be self biased R1 R2 R3 LVDS receiver biasing has to be reliable • modified version of low voltage beta-multiplier (M1, R2 & R3 have been added) (Baker, CMOS, 2nd edition, IEEE press p. 629) • reference current is defined by R1 (R1=R2=R3) • circuit has only one dominant pole easy to compensate • addition of transistor M1 gives first order temperature compensation (Friori, A New Compact Temperature compensated CMOS current reference, IEEE Trans. Circ. & Sys., 2005) • start-up circuit enforces current flow in the circuit and switches off during normal operation 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis Reference Current vs. Supply Voltage reference current stays stable for VDD > 1.0 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis Reference Current vs. Temperature variation of referene current < 300nA with temperature 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis Monte Carlo Simulation Imean=23.7 uA, Isigma=1.3 uA, Imin=17.5uA,Imax=32.5uA 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis Monte Carlo: RiseTime & Duty Cycle Rise Time Duty Cycle Mean:217ps Sigma:20ps 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis Mean:50.4% Sigma:0.5% Slide 12 STATUS: LVDS circuits • Layouts have been adapted to the longer bondpad pitch of production chip (with respect to the test chips) LVDS driver has now more width & less height OLD • Metalization has been changed from LM to DM • Design has been ported fom Tripple-Well to T3 substrate isolation option NEW • LVDS biasing & failsafe circuits designed & layouted Extraction & simulations of parasitics has not been done yet LVDS driver 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis Pad Frame 20mm L D O VDDA1 A 0 10 20 30 L D O VDDD1 40 VDDA2 50 60 70 VDDD2 80 90 DC DC D 100 110 120 00 11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 LL D D O O A A P P R R O O B B E E P P R R O O B B E E P P R R O O B B E E P P R R O O B B E E P P R R O O B B E E P P R R O O B B E E P P R R O O B B E E P P R R O O B B E E P P R R O O B B E E LL D D O O A A II N N LL D D O O A A O O U U TT LL V V D DR R O OE E A A FF G GO O N NV V D DE E R R R R II D D E E 50 Power 22 Digital I/O 13 Analog I/O 21 Probe 128 Overall 133 Maximum 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 D D C C D D C C LL D D O O D D V V LL R R D D E E O O FF G G O O N N V V D D E E R R R R II D D E E LL D D O O D D O O U U TT O O U U TT & & LL D D O O D D II N N D D C C D D C C II N N D D C C D D C C C C A A P P TT O O P P D D C C D D C C D D C C D D C C C C C C LL PP PP PP PP PP PP PP PP PP PP A A KK RR RR RR RR RR RR RR RR RR RR O P OO OO OO OO OO OO OO OO OO O P B B O O TT TT O O M M O OB B B B B B B B B B B B B B B B B B B B V V E E E E E E E E E E E E E E E E E E E E E E R R R R II D D E E GND VDDA VDDD DCDC-OUT External power routing Possibility to study different powering schemes Pads grouped together to independent supply domains 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis OFF - CHIP Bond Pads INPUT PAD CORE VDD GND SUB VDDT3 OUTPUT PAD CORE POWER PAD CDM diodes M3/MQ/MG M3/MQ/MG M3/MQ/MG M3/MQ/MG 200 um HBM diodes HBM diodes 100um RC-Clamp 250 um 300 um 150 um • 150um bond pitch • Two different bond pad sizes 100um x 200um I/O pads 250um x 200um power pads (corresponds to two I/O pads) • ESD devices, vertical M2 & horizontal M3,MQ,MG supply rail routing below the pad • Only supply voltage & ground of according supply domain is routed below the pads • VDDT3 rail is either connected to dedicated pad (digital domain) or shorted to VDD 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis Bond Pad Layout Spacer Cell Cut Cell ESD • ESD devices are located in upper part of the pad • lower part has been kept empty for TSV • Spacer cells are placed between the pads • cut cells seperare pads of different supply domains & provide bus to bus ESD protection 120um empty for TSV tests Analog Input Pad 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis Question & Answer ESD Question: Do you follow a dedicated ESD strategy? Answer: Yes, we follow the recommendation of the IBM ESD manual! 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis ESD strategy Ground-to-Supply Discharge VDDT3 VDDA VDDD GNDA GNDD SUB Bus-to-Bus Protection Output Pad RC-Clamp • I/O pads are connected via reverse-biased diodes to the supply rails • Inputs have seconde diode pair & series resistor limit max. voltage @ gate of transistor • Reverse biased diodes between VDD & GND rails discharge path from GND to VDD • RC-Clamp shorts VDD & GND in case of positive going ESD event discharge path from VDD to GND • Ground busses are protected by antiparallel diodes 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis Input Pad Status Padframe All needed pad types have been developed: Supply: Digital: Analog: Analog VDD CMOS IN Analog IN Digital VDD CMOS OUT Analog OUT VDD 3.3V LVDS IN Wide Analog OUT Wide VDD LVDS OUT GND Wide GND Substrate VDDT3 Construction of pad frame ongoing 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis OLD & BACKUP SLIDES 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis LVDS Chip Submissions • 21-Jul-2007: first test chip submitted to UMC 130nm via Europractice mini-asic run real hardware test of chosen architecture for use in FE-I4 • 24-Mar-2008: 4 channel LVDS transceiver chip submitted to IBM 130nm (LM) via CERN for use in a SEU test setup characterization of new cables and flex types • 15-Sep-2008: LVDS driver with tristate option submitted to IBM130nm (DM) via MOSIS IBM 130nm (LM) IBM 130nm (DM) 2mm vrefLDO gndLDO gndLDO gndLDO gndLDO vddIn vddIn vddIn IoutDACn vddIn vddDAC IoutDAC gndSub gndDAC IbnDAC DO 2 mm 1.8mm IbpDAC UMC 130nm LD DI CLK IbnLDO vddOut vddOut vddOut LDO GNDD VDDD vddOut gndSub 1.5mm gndSub IbnShuldoL IbnShuldoR VrefShuldoL VrefShuldoR 2 mm IinShuldo IinShuldo 10 BIT DAC IinShuldo IinShuldo IinShuldo SHUNT LDO R SHUNT LDO L IinShuldo IoutShuldo IinShuldo IinShuldo IoutShuldo IoutShuldo IoutShuldo IoutShuldo 2mm IoutShuldo IoutShuldo Tristate LVDS IoutShuldo RrefShuldoL RrefShuldoR 100 um VoutShuldoR IrefShuldoR VoutShuldoR VoutShuldoR TxLVDS VoutShuldoR TxnLVDS IrefLVDS VosLVDS vddLvds gndLvds gndSub VoutShuldoL FE-I4 Review - Padframe - Michael Karagounis VoutShuldoL 03.11.2009 VoutShuldoL 0.8mm VoutShuldoL IrefShuldoL 1.5mm 162.5 um Slide 21 LVDS Transceiver-Chip Test Setup Type 0 Cable Adapter Type 0 Cable Adapter Biasing developed by A. Eyring • 4 x LVDS receiver CMOS output & CMOS input LVDS driver • Configurable Chain: LVDS receiver LVDS driver • 2x Type 0 cable adapter: LVDS signal Type 0 cable termination resistor LVDS receiver 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis Measurements LVDS Transceiver Chip Measurement with active differential probe and 100 Ohm termination resistor on PCB @ 1.2V supply LVDS Rx In LVDS Tx Out @ 320 MHz Clock LVDS RX In CMOS Out CMOS In LVDS TX Out Clock-Rate Clock-Rate 320MHz 320MHz 160MHz Input Common Mode Voltage 1.05V 600mV 160MHz 150mV 40MHz 40MHz Increased biased currents needed for LVDS RX to operate @ high frequences & low common mode voltages measured by L. Gonella 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis LVDS Transceiver-Chip Eye Diagram • • • • Test-Setup includes: One – 4 meter twisted pair 36 AWG wire (0.127 mm copper diameter) 160 Mbps data rate Eye pattern is 317mV, need > 200mV No errors @ 150 Mbps or 350 MbpsError rate better than 2*10-13 @ 350 Mbps IBL DATA TRANSMISSION TEST SETUP XILINX DEVELOPMENT BOARD - ML405 TEST CHIP LVDS DRIVER 50 CM PPA-0 FLEX 100 OHM CMOS DRIVER 50 OHM HRS DF30 CONNECTOR LVDS RECEIVER 100 OHM 350Mbps without cable 4 METER TWISTED PAIR 36-AWG COPPER 80 OHM 160Mbps with cable M. Kocian, D. Nelson, Su Dong SLAC 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis CMOS Input & Output Buffers Input Buffer M1 Vin Output Buffer M7 M5 M7 M2 Vout M3 M4 Vin M8 M1 M3 M5 M8 Vout M2 M6 M4 M6 M9 M10 Schmitt-Trigger with 200mV hysteresis • Cascoded structures have higher snapback voltage • Have been used in LVDS-Transceiver chip 03.11.2009 FE-I4 Review - Padframe - Michael Karagounis developed by D. Gnani