Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
9. Inductance 1) Mutual inductance 1 2 I1 I1 B2 2 2 N 21 M 21I1 1 B1 I 2 1 N11 M 12 I 2 B t I 1 2 M t M12 M 21 M M is a geometrical factor! I 2 1 M t 2) Self-inductance 1 N LI Units: (henry) L I t L is a geometrical factor! L M 1H 1Wb / A 1V s / A 1 s 1J / A2 3) Example: Self-inductance of a solenoid Three geometrical quantities describe a solenoid: A- area of cross-section l – length N- number of turns (or n=N/l – number of turns per unit length) Self-inductance L should be a function of these quantities, and should be independent from the current in the solenoid! N1 LI L 1 BA 0 nIA N 1 1 I is proportional to I ! L 0 n 2 Al 0 n 2V 0 N 2 A / l Example: r 2cm l 20cm N 200 L ? 4 10 L L 320 H 7 T m / A 200 2 10 2 m 20 10 2 m 2 2 32 2 10 6 H 10. RL circuits I 1) Circuit with emf ind IR L R I IR t I R I 0 t L L I 1 e R t / I max R L/ R Relaxation time 2) Circuit without emf ind IR I R I 0 t L e 2.718 I I 0 e t / e 1 0.368 1 e 1 0.632 L ind L I t Example: Two tightly wound solenoid have the same length and circular cross-sectional area. They use wires made from the same material, but solenoid 1 uses wire that is half as thick as solenoid 2. What is the ratio of their inductances? What is the ratio of their time constants (assuming no other resistance in the circuits)? l1 l2 l a) A1 A2 A L2 n Al 2 0 2 1 2 r1 r2 / 2 n1 2n2 lw1 2lw 2 Aw1 Aw 2 / 4 a ) L1 / L2 ? b) 1 / 2 ? L1 0 n12 Al b) R1 lw1 Aw1 lw 2 R2 Aw 2 1 L1 / R1 2 L2 / R2 L1 / L2 n / n n1 / n2 4 2 1 R1 / R2 2 2 2 lw1 / lw 2 2 8 Aw1 / Aw 2 1 / 4 1 / 2 L1 / L2 4 1 R1 / R2 8 2 11. Energy stored in an inductor I L IR t I I LI I 2R t power from the battery U I LI t t dissipation in the resister power supplied to the inductor U 12 LI 2 For any inductor! 11a. Energy of magnetic field For solenoid: L 0 n 2V B 0 nI I B / 0 n Magnetic energy density: (for any magnetic field B) Example: B 0.20T u ? 0.20T 2 2 B V U 12 LI 12 0 n V B / 0 n 20 2 2 2 U B2 u V 20 105 4 3 u T A / m 1 . 6 10 J / m 2 4 10 7 T m / A 2 12. AC circuits and reactance 1) Resistor I I 0 cos t V IR I 0 R cos t V0 cos t I rms I 0 Vrms V0 t 2f 2 T 2 2 Current & voltage are in phase 2 2 P IV I rms R Vrms R 2) Inductor I I 0 cos t V L I 0 t V LI 0 sin t V0 cos(t 90 ) V0 LI 0 I 0 X L Vrms LI rms I rms X L V I t inductive reactance: The current lags the voltage by 90° X L L 2fL If the frequency is low then the reactance is small! If the frequency is high then the reactance is big! Example: L 0.30 H Vrms 120V f a 60 Hz f b 600 Hz I rms ? X La 2f a L 2 60 Hz 0.30 H 113 X Lb 2f b L 2 600 Hz 0.30 H 0.30 H 600 Hz 1130 I rms( a ) Vrms / X La 120V / 113 1.06 A I rms(b ) Vrms / X Lb 120V / 1130 0.106 A 3) Capacitor I0 V sin t V0 cos(t 90 ) C I The current leads V0 0 I 0 X C the voltage by 90° L I Vrms rms I rms X C L I I 0 cos t t I capacitive reactance: X C V If the frequency is low then the reactance is big If the frequency is high then the reactance is small! Example: C 1.0 F Vrms 120V f a 60 Hz f b 600 Hz I rms ? 1 1 C 2fC XC 1 2fC I rms Vrms / X C 2fCVrms I rms( a ) 2 60 Hz 1.0 10 6 F 120V 1.44 10 2 A I rms( a ) 0.045 A I rms( b ) 0.45 A