Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Ch 11 Bipolar Transistors and Digital Circuits * 2-input ECL OR / NOR Gate * * A Y = A+B B VR Y = A+B ECES 352 Winter 2007 * Ch 11 Bipolar Digital Pt. 1 Examine bipolar junction transistor (BJT) use in inverters for logic circuits. Basic Inverter (RTL) One npn transistor and a load resistor BJT Inverters Transistor-Transistor Logic (TTL) Emitter-Coupled Logic (ECL) Analyze to understand inverter performance: voltage transfer characteristic, noise margins, fan-in and fan-out limits, power dissipation and switching speed. 1 Bipolar Transistor Operation C VBC _ + + V + _ CE _ VBE E B n Collector p Base n Emitter IC Saturation IC< β IB Active Ic= βIb * Transistor regions of operation Forward Active VBE > 0 E jnc forward VBC< 0 C jnc reverse Cutoff VBE < 0 E jnc reverse VBC < 0 C jnc reverse Saturation VBE > 0 E jnc forward VBC > 0 C jnc forward Note: VCE= VBE+VCB = VBE - VBC Cutoff IC ≈ 0 ECES 352 Winter 2007 VCE Ch 11 Bipolar Digital Pt. 1 2 Bipolar Transistor Operation Transistor regions of operation * Forward Active * Electron injection at emitter and collection at collector VBE > 0 E jnc forward VBC< 0 C jnc reverse Ic = β Ib * Cutoff * No electron injection at Emitter VBE < 0 E jnc reverse VBC < 0 C jnc reverse IC ≈ 0 * Saturation * Electron injection from both E & C VBE > 0 E jnc forward VBC > 0 C jnc forward IC < β IB IC Saturation IC< β IB Active Ic= βIb Cutoff IC≈0 ECES 352 Winter 2007 VCE Ch 11 Bipolar Digital Pt. 1 3 Bipolar Transistor Operation - DC * * IC * IB Base bias VBE determines IB VCC with RC determine output load line. Base IB with output load line determines Quiescent Point (VCE , IC ) Output Load Line VCC I C RC VCE VCE VBE IC IC VCC RC IB VBB RB VCC VCE RC RC I B I Boe qVBE / kT Base Load Line VBB I B RB VBE IB DC Base Current Quiescent Point VBB VBE RR RB VCC VBB ECES 352 Winter 2007 VCE VBE Ch 11 Bipolar Digital Pt. 1 4 Bipolar Transistor Operation – Small Signal AC iB iC vBE vCE VBB+vi * In small signal amplifiers, AC signal at input is small –> base current variation is small. Device moves around DC quiescent point Device stays in the active region Amplifier produces current and voltage gain depending upon the configuration, e.g. common emitter (above). ECES 352 Winter 2007 Ch 11 Bipolar Digital Pt. 1 5 Bipolar Transistor Operation – Digital Circuits IC VCC RC Saturation IC< β IB * * Active Ic=βIb V V CC CE Input signal vi is large. Cutoff IC≈ 0 VBE and IB changes are large. Important applications digital circuits and power amplifiers Device can be in active, saturation or cutoff depending on VBE and IB. Transistor still operates on the load line. Moves from cutoff thru active to saturation or vice versa as the input signal changes. ECES 352 Winter 2007 Ch 11 Bipolar Digital Pt. 1 6 Bipolar Transistor Operation - Characteristics * IC * Active Ic= βIb Saturation IC< β IB * ~ 0.2 V IB VCE Cutoff IC 0 I B I Boe qVBE / kT 0.7 V 0.8V ECES 352 Winter 2007 * Each region of device operation has its own unique characteristics Active Current gain Ic= β Ib VBE = VBE,active ≈ 0.7 V (typical value) VCE,active ≈ ?, NO typical value! Saturation Reduced current gain IC< β IB VBE = VBE, sat ≈ 0.8 V (typical value) VCE = VCE, sat ≈ 0.2V (typical value) Cutoff No current gain IC ≈ 0, IB ≈ 0 VBE < O VCE,cutoff ≈ ?, NO typical value! VBE Ch 11 Bipolar Digital Pt. 1 7 Resistor Transistor Logic (RTL) * Y A B * * * * vo * vo vi RTL Logic Earliest and simplest logic “0” = low voltage “1” = high voltage Inverter is the basic building bock Combine two inputs in parallel to implement NOR Combine two inputs in series to implement NAND Transistors operate in cutoff for low “0” input (base) voltage, so IC ≈ 0 and output is high “1”. Transistors operate in saturation for high “1” input (base) voltage, so IC ~ mA’s and the output is low “0” due to IR drop across RC. vi ECES 352 Winter 2007 Ch 11 Bipolar Digital Pt. 1 8 Basic Bipolar Transistor Inverter (RTL) * * IB IC p + VBE n n 0.7 V 0.8V IC VCC RC Active Ic=βIb Saturation IC< β IB ~ 0.2 V Cutoff IC≈ 0 ECES 352 Winter 2007 Resistor Transistor Logic (RTL) For low vi input, output vo is high Transistor is off (cutoff) since iB ≈ 0 because base-emitter junction is not biased sufficiently (VBE is too small). Since iB ≈ 0, then iC ≈ 0 because iC ≈ β iB. So vo = VCC - iC RC ≈ VCC VBE * For high vi input, output vo is low Transistor is on since iB > 0 because base-emitter junction is biased sufficiently (VBE is large). Since VBE is large (~0.8 V), iB >> 0, then iC >> 0 since iC ≈ β iB. So vo = VCC - iC RC is very small. Transistor driven into saturation region so . vo = VCE,sat ≈ 0.2V VCE Ch 11 Bipolar Digital Pt. 1 9 Basic Bipolar Transistor Inverter (RTL) * Transistor operates along load line. V V VCC I C RC VCE or I C CC CE RC RC * Transistor operates in cutoff when input is low since iB ≈ 0. * As input vi increases, iB increases and transistor moves into active region. * As input vi increases further, transistor moves into saturation region and VCE goes towards zero. + + VCE VBE IC Output Load Line Input high vi large IC VCC I C RC VCE active IC Saturation iC/iB < β VCC VCE RC RC Input low vi small 0 ECES 352 Winter 2007 cutoff VCE Ch 11 Bipolar Digital Pt. 1 10 VCE RTL Voltage Transfer Characteristic * VCC = 5 V IB * + VCE + VBE 0.7 0.8 vo VBE * A B I II Region I (A to B) Transistor is in cutoff VBE is small, iB ≈ 0, vo = VCC. Region II (B to C) Transistor is on in the active mode (iC = β iB). iB and VBE are larger; VBE ≈ 0.7V iC and iB increase as vi and VBE increase. vo and VCE falls as icRC increases. Region III (C to D) Transistor is in the saturation mode (iC < β iB). iB and VBE are larger, VBE ≈ 0.8 V iC is larger VCE is small, ≈ VCE,sat ≈ 0.2V III C D vi ECES 352 Winter 2007 Ch 11 Bipolar Digital Pt. 1 11 Noise Margins Drive Inverter * Load Inverter * * v01 v02 vi1 * vi2 Noise margins are a measure of the reliability of the technology. Measure of the sensitivity to noise. Consider one inverter driving an identical inverter. How large a noise spike can be tolerated before an error occurs? • v02 v01 • Load Inverter Drive Inverter NML vi1 ECES 352 Winter 2007 VOL VIL • NMH VIH Ch 11 Bipolar Digital Pt. 1 • VOH vi2 For output of driver high (v01=VOH), then input of load inverter is high (vi2=VOH ). A negative noise spike on input of load inverter reduces input signal. Trouble when net input signal is less than VIH so noise margin is NMH = VOH - VIH . Similarly, for the low state NML = VIL - VOL . 12 RTL Inverter Noise Margins VCC = 5 V * Noise Margin for Low State NML = VIL - VOL VIL = VBE,active = 0.7 V VOL = VCE,sat = 0.2 V NML = VIL - VOL = 0.7 V - 0.2 V = 0.5 V * Noise Margin for High State NMH = VOH - VIH VOH = VCC = 5 V VIH = VBE,sat = 0.8 V NMH = VOH - VIH = 5 V - 0.8 V = 4.2 V Unequal noise margins for high and low states. IB + VCE + VBE 0.7 0.8 VBE vo VOH A B I II * III VOL NML C VOL VIL VIH ECES 352 Winter 2007 NMH D vi VOH Ch 11 Bipolar Digital Pt. 1 13 RTL Power Dissipation VCC = 5 V RC = 10K IB * + VCE + * VBE 0.7 0.8 VBE vo A B VOH I II Output High State (Low input) Transistor is in cutoff so iC 0. No static power dissipation for high state, PH = 0. Output Low State (High input) Transistor is in saturation so v o = VCE,sat = 0.2 V. iC = (VCC - VCE,sat )/RC = (5V - 0.2 V)/10K = 0.48 mA. PL =VCC iC = (5 V)(0.48 mA) = 2.4 mW Average P = 1/2(PH + PL) = 1.2 mW III C VOL D vi VIL VIH ECES 352 Winter 2007 Ch 11 Bipolar Digital Pt. 1 14 RTL Propagation Delay * VCC = 5 V Output going high iR iCap VCC + + vo C VCE + VBE iCap iCap (t ) C VCE,sat tPLH VCE ,sat dvo V vo (t ) iR CC dt RC t dvo 1 dt VCC vo RC C 0 t t t t RC C RC C RC C RC C vo VCC 1 e VCE , sat e 5V 1 e 0.2V e t PLH time for output to rise to A B I vo t vo VOH Transistor turned off (cutoff) Charging current flows through RC tPLH is time it takes the output to rise from VOL = VCE,sat = 0.2 V to 1/2(VOH + VOL) = 2.6 V vo II 1 VOH VOL 1 5V 0.2V 2.6V 2 2 t t PLH PLH R C C 0.2V e RC C 2.6V 5V 1 e vo III C VOL vi VIL VIH ECES 352 Winter 2007 5 2 .6 0.5 4.8 For R C 10K and C 10pF we get e D t PLH RC C Long charge – up time! t PLH RC C ln 2 10 K (10 pF ) 1.x10 7 sec 100 n sec Ch 11 Bipolar Digital Pt. 1 15 RTL Propagation Delay * VCC=5V Output going high vo iR iCap VCC + + vo C Transistor turned off (cutoff) (M N) Charging current flows through RC tPLH is time it takes the output to rise from VOL = VCE,sat = 0.2 V to 1/2(VOH + VOL) = 2.6 V (N O) VCE + VCE,sat VBE tPLH t Transient Response MNO vo A B VOH I IC II M III C VOL D vi VIL VIH ECES 352 Winter 2007 P N Ch 11 Bipolar Digital Pt. 1 VCE O 16 RTL Propagation Delay * VCC = 5 V vo iR Output going low iCap VCC + + + vo C VCE VBE Transistor turned on (saturation) and providing discharge current (P R) But current also flows through RC tPHL is time it takes the output to fall from VOH = VCC = 5 V to 1/2(VOH + VOL) = 2.6 V (R S) VCE,sat tPHL t vo A B VOH I IC II Transient Response PRS S R III C VOL D vi VIL VIH ECES 352 Winter 2007 P VCE Ch 11 Bipolar Digital Pt. 1 17 RTL Propagation Delay * VCC = 5 V iCap iR iCap + + VBE + vo Output going low dv V vo C o iR iC CC iC so dt RC vo VOH t VCC dvo 1 dt vo iC RC RC C 0 Assuming a constant transistor current, then C VCE vo VCC t t t t RC C RC C RC C RC C VOH e 5V e iC RC 1 e (5V iC RC ) 1 e t PHL time for output to fall from VOH 5V to vo 2.6V t t t PHL PHL PHL R C R C C C 5V e 2.6V (5V iC RC ) 1 e (5V iC RC ) iC RC e RC C e IC t PHL RC C i R iC RC 2.4 so t PHL RC C ln C C iC RC iC RC 2.4 For a transist or with 50 and R B 100 K , iB S RB 5V 0.7V 43A and iC iB 50(43A) 2.15 mA 100 K For R C 10K and C 10pF we get R P VCE ECES 352 Winter 2007 vi VBE ,act 2.15mA(10 K ) t PHL RC C ln 1.1x10 8 sec 11 n sec 2.15mA(10 K ) 2.4 Short 1 t P 100 n sec 11 n sec 56 n sec discharge 2 time! DP t P P 56 n sec 1.2mW 67 pJ Ch 11 Bipolar Digital Pt. 1 18 Resistor Transistor Logic (RTL) * RTL provides simple, basic digital technology based on bipolar transistors and resistors. • Logic levels and noise margins Y A B Noise Margin for Low State NML = VIL – VO = 0.7 V - 0.2 V = 0.5 V Noise Margin for High State NMH = VOH - VIH = 5 V - 0.8 V = 4.2 V Unequal noise margins for high and low states. Propagation delays t PHL 11 n sec Output going low Output going high t PLH 100 n sec t P 56 n sec Propagation delay Power – Delay Product vo * vo vi * vi ECES 352 Winter 2007 Ch 11 Bipolar Digital Pt. 1 DP t P P 56 n sec 1.2mW 67 pJ 19