* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Download Rd50_ATLAS07 - Indico
Integrating ADC wikipedia , lookup
Operational amplifier wikipedia , lookup
Josephson voltage standard wikipedia , lookup
Power electronics wikipedia , lookup
Schmitt trigger wikipedia , lookup
Current source wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Rectiverter wikipedia , lookup
Opto-isolator wikipedia , lookup
Voltage regulator wikipedia , lookup
Current mirror wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt, G. Bredeson, N. Dawson , J. G. Wright, H. F.-W. Sadrozinski Santa Cruz Institute for Particle Physics, Univ. of California Santa Cruz, CA 95064 USA Y. Unno, S. Terada, Y. Ikegami, T. Kohriki Institute of Particle and Nuclear Study, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan K. Hara, H. Hatano, S. Mitsui, M. Yamada University of Tsukuba, Institute of Pure and Applied Sciences, Tsukuba, Ibaraki 305-9751, Japan A. Chilingarov, H. Fox Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Need to start Large-Scale Production: HPK Silicon Detectors for the High Luminosity Upgrade • What are the operational characteristics of irradiated n-on-p FZ detectors? – Can adequate strip isolation be achieved after irradiation? – Does it depend on specific surface treatment? (p-spray, p-stop) – Do detectors with better strip isolation have lower breakdown? – Are complicated punchthrough structures needed for adequate punch-through protection? RD50 , CERN Nov 2009 • Signal collection requires - High voltage operation • Higher rate of particles requires - higher segmentation of detecting electrodes -acceptable data transfer rate • N-strips in P-bulk wafer (n-in-p) - always depleting from strip side - lower cost - collecting electrons H. F.-W. Sadrozinski, UC Santa Cruz 2 History of ATLAS07 Submissions @ HPK X1: p-stop, p-spray+p-stop Weak spots identified Mask modification X2 ~ with modified mask X3 many doping densities S1 p-stop, 30 wafers RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz S2 p-stop, p-spray 90 wafers 3 3 n-in-p Sensor • Past Japanese studies – 4 inch (100 mm) wafers • • – 6 inch (150 mm) wafers • • • – FZ<111> (~6k Ωcm) MCZ<100> (~900 Ωcm) FZ1<100>(~6.7k Ωcm) FZ2<100>(~6.2k Ωcm) MCZ<100>(~2.3k Ωcm) FZ, MCZ available at HPK • ATLAS07 submission – 6 inch (150 mm) wafers • FZ1<100>(~6.7k Ωcm) • (FZ2<100>(~6.2k Ωcm) • Miniature sensors – 1cm x 1cm • • Full size prototype sensors for Stave program – 9.75 cm x 9.75 cm • RD50 , CERN Nov 2009 Irradiation studies 4 segments: two "axial" and two "stereo" (inclined) strips 4 4 H. F.-W. Sadrozinski, UC Santa•CruzShort strips 24 n-in-p Miniature Sensors • Radiation damage study – Strip Isolation (Zone1, Zone2, Zone3) • • – – – Structure: p-stop, p-spray, p-stop+p-spray Density: 1x, 2x, 4x, 10x1012 ions/cm2, ... "Punch-through Protection" structures (Zone4) Narrow metal effect (Zone5) Wide pitch effect (Zone6) RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 5 5 Evaluations • Irradiations – 70 MeV protons at CYRIC (Tohoku Univ., Japan) – Reactor neutrons at Ljubljana (Slovenia) • Measurements – Full-size sensors (see J. Bohm’s talk) • C-V, i-V, single-strip measurements – Onset of Microdischarge • I-V • Hot electron Interstrip resistance – Charge collection efficiency (CCE) (a few slides by A. Affolder) • 90Sr beta ray – Surface: • Interstrip resistance • Interstrip capacitance – Punch-through Protection • Dynamic resistance with a constant bias voltage to the backplane RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 6 6 Interstrip Resistance Measurements • Using the detectors DC-pads • The setup purpose is to measure the current in the test strip due to the applied voltage on the neighbors using a parameter analyzer. Measurement was done at different bias voltages. • Data taken is plotted as test current against the neighbor voltage 2 Rint di1 dv2 I1 vs V2 5.00E-06 4.00E-06 Current(A) 3.00E-06 2.00E-06 5 volts 1.00E-06 20 volts 0.00E+00 y = -3.33E-07x + 1.45E-07 -1.00E-06 y = -1.07E-06x + 1.33E-07 y = -1.64E-06x + 9.88E-08 -2.00E-06 y = -2.45E-06x + 7.16E-08 -3.00E-06 50 volts 100 volts 300 volts y = -3.55E-06x + 5.82E-08 -4.00E-06 -1.5 -1 -0.5 0 Voltage (V) RD50 , CERN Nov 2009 0.5 1 1.5 H. F.-W. Sadrozinski, UC Santa Cruz 7 Interstrip Resistance Results Interstrip Resistance for Detectors from the 3rd Series 1.0E+13 Φ = 1.14e13 neq Pre-rad 1.0E+12 W46-BZ3-P1 (POST RAD) W44-BZ2-P2 (POST RAD) W40-BZ2-P2 (PRE RAD) W40-BZ2-P2 (POST RAD) 1.0E+10 W40-BZ3-P1 (PRE RAD) Total p-dose = 4*1012 cm-2 W40-BZ3-P1 (POST RAD) 1.0E+09 W33-BZ3-P1 (PRE RAD) W33-BZ3-P1 (POST RAD) W23-BZ3-P15 (PRE RAD) 1.0E+08 Total p-dose = 2*1012 cm-2 W23-BZ3-P15 (POST RAD) W02-BZ2-P2 (PRE RAD) 1.0E+07 W02-BZ2-P2 (POST RAD) W02-BZ4B-P10 (PRE-RAD) Total p-dose = 1*1012 cm-2 1.0E+06 W02-BZ4B-P10 (POST-RAD) W02-BZ5-P11 (PRE-RAD) W02-BZ5-P11 (POST-RAD) 1.0E+05 0 50 100 150 200 250 300 Bias Voltage (V) W18-BZ4D-P22 (PRE-RAD) W18-BZ4D-22 (POST-RAD) 1.0E+14 W18-BZ4C-P16 (PRE-RAD) W18-BZ4C-P16 (POS-RAD) W18-BZ4B-P10 (PRE-RAD) 1.0E+13 W18-BZ4B-P10 (POST-RAD) W18-BZ4A-P4 (PRE-RAD) W18-BZ4A-P4 (POST-RAD) W18-BZ3-P18 (POST-RAD) 1.0E+12 W18-BZ3-P15 (POST-RAD) W18-BZ2-P17 (POST-RAD) W18-BZ2-P14 (POST-RAD) 1.0E+11 W17-BZ4D-P22 (PRE-RAD) W17-BZ4D-P22 (POST-RAD) W17-BZ4C-P16 (PRE-RAD) W17-BZ4C-P16 (POST-RAD) 1.0E+10 W17-BZ4B-P10 (PRE-RAD) W17-BZ4B-P10 (POST-RAD) 1.00E+12 1012 Rint Φ = 1e13 neq Fit 1.00E+11 1011 Rint Rint(Ohms) (Ω) (filled = pre-rad, open squares = 1e12 neq , open diamonds = 1e13 neq) Resistance (ohms) W46-BZ3-P1 (PRE RAD) 1.0E+11 Resistance (Ohms) • To first order, interstrip resistance depends not on the specific zone, but depends on the total p-dose applied. • Higher total p-dose means better strip isolation after irradiation. • All Series 1 detectors exhibit a good post-rad Rint (>10^8 Ohms) behavior, even after being irradiated with protons up to 1e13 neq 1.00E+10 1010 1.00E+09 109 y = 1.43E+06e1.90E-12x 108 1.00E+08 107 1.00E+07 W17-BZ4A-P4 (PRE-RAD) 1.0E+09 W17-BZ4A-P4 (POST-RAD) Series 1 Total P-Dose = 4*1012 cm-2 p-stop only 1.0E+08 0 50 100 150 Bias Voltage (V) RD50 , CERN Nov 2009 200 W17-BZ3-P9 (PRE-RAD) 1.00E+06 106 W17-BZ3-P9 (POST-RAD) W17-BZ3-P13 (PRE-RAD) 250 300 W17-BZ3-P13 (POST-RAD) W17-BZ2-P2 (POST-RAD) 0 12 12 2E+12 4E+12 2x10 4x10 Total P-Dose (1/cm^2) (1/cm2) 12 6E+12 6x10 W17-BZ2-P14 (POST-RAD) H. F.-W. Sadrozinski, UC Santa Cruz 8 Interstrip Capacitance Interstrips capacitance for 3rd series (@1MHz) 800 750 Capacitence(fF) • AC pads are used. • 5 probes are used; one on the test strip, one on each neighbor, and two more to ground the next neighbors. W46-BZ3-P1(PRE RAD) 700 W46-BZ3-P1(POST RAD) W40-BZ3-P1 (PRE RAD) 650 W40-BZ3-P1 (POST RAD) 600 W33-BZ3-P1 (PRE RAD) W23-BZ3-P15 (PRE RAD) 550 W12-BZ3-P1 (PRE RAD) W12-BZ3-P1 (POST RAD) 500 W02-BZ3-P1 (PRE RAD) 450 0 500 1000 Bias Voltage(V) Interstrips capacitance for 3rd series, wafer 1, 2 and 4 (@1MHz) 660 Capacitence(fF) 640 W02-BZ4B-P10 (POST RAD) 620 W02-BZ4A-P4 (POST RAD) W02-BZ2-P2 (POST RAD) W02-BZ1-P7 (POST RAD) 600 W02-BZ4C-P10 (POST RAD) W02-BZ4D-P22 (POST RAD) W44-BZ2-P2 (POST RAD) 580 560 0 200 400 600 800 1000 Bias Voltage(V) RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 9 Rint vs. Cint Resistace (Ω) 1.0E+12 W46-BZ3-P1 (PRE RAD) 1.0E+11 W46-BZ3-P1 (POST RAD) 1.0E+10 W40-BZ3-P1 (POST RAD) 1.0E+09 W33-BZ3-P1 (POST RAD) 1.0E+08 W23-BZ3-P15 (POST RAD) 1.0E+07 W12-BZ3-P1 (POST RAD) W40-BZ3-P1 (PRE RAD) W33-BZ3-P1 (PRE RAD) W23-BZ3-P15 (PRE RAD) W12-BZ3-P1 (PRE RAD) W02-BZ3-P1 (PRE RAD) W02-BZ3-P1 (POST RAD) 1.0E+06 550 650 750 Capacitance (fF) Φ = 1e13 neq Zone 4 Resistace (Ω) 1.E+10 1.E+09 1.E+08 1.E+07 Zone 5 1.E+06 500 600 700 800 900 W46-BZ3-P1 W44-BZ2-P2 W40-BZ3-P1 W35-BZ1-P19 W35-BZ2-P17 W35-BZ5-P11 W33-BZ3-P1 W31-BZ5-P11 W25-BZ5-P11 W12-BZ3-P1 W02-BZ1-P7 W02-BZ2-P2 W02-BZ4A-P4 W02-BZ4B-P10 W02-BZ4C-P16 W02-BZ4D-P22 W1-BZ5-P11 W1-BZ2-P17 W1-BZ1-P19 • Helpful to make scatter plot between Rint and Cint • Strip isolation is best in the upper left corner, and worst in the lower right. • Dependence of post-rad Cint on specific zone is seen. • Zone 5 (narrow metal) has the highest Post-rad Cint without providing better breakdown performance. 50 45 Φ = 1e13 neq 40 W02-BZ1-P7 W02-BZ3-P1 W02-BZ4A-P4 W02-BZ4B-P10 W02-BZ4C-P16 W02-BZ4D-P22 W02-BZ5-P11 W12-BZ3-P1 W23-BZ3-P15 W33-BZ3-P1 W44-BZ2-P2 W46-BZ3-P1 35 30 Current (µA) Rint vs. Cint for the 3rd series 1.0E+13 25 20 15 10 5 0 0 200 400 600 Bias Voltage (V) 800 1000 Capacitance (fF) RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 10 Punch-Through Protection: (against large strip voltages) Z4A • Zone 4 detectors include an additional punch-through structures. • Apply a voltage to DC pad and measure the induced current between DC pad and bias resistor. • The effective resistance is then Z4B Reff dVtest / dI test • Punch-through resistance is defined as RPT (1 / Reff 1 / Rbias )1 Z4C Z4D where Rbias is the resistance of the bias resistor. 2.0 Effective Resistance (MΩ) Effective Resistance (MΩ) Φ = 1.2e13 neq 1.8 1.4 1.2 1 w42-bz2 w42-bz4d w44-bz3 w44-bz4d w25-bz3 w33-bz3 w02-bz3 w11-bz4a w11-bz4b w11-bz4c w11-bz4d 0.8 0.6 0.4 0.2 1.6 1.4 Total p-dose = 4e12 cm-2 p-stop only 1.2 1.0 RPT = Rbias 0.8 Z3 Z4A Z4B Z4C Z4D 0.6 0.4 0.2 0 -50 -40 -30 -20 -10 Test Voltage (Volts) RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 0 0.0 -50 -25 0 25 50 Test Voltage (Volts) 11 Punch-Through Voltage 20 15 Total pdose = 2e12 10 12 10 8 6 4 30 20 RD50 , CERN Nov 2009 Total pdose = 2e12 W33-BZ3-P13 W25-BZ3-P9 W11-BZ4D-P22 W11-BZ4C-P16 W11-BZ4B-P10 W11-BZ4A-P4 W02-BZ3-P6 Total pdose = 1e13 Total p-dose = 2e13 Total p-dose = 1e13 Total p-dose = 4e12 10 0 1.35x1012 1.20x1013 Φ=1.2e13 neq 40 0 1.35x1012 1.35x1012 p-stop only = 50 2 pre-rad p-spray + p-stop = 1.18x1015 1.18x1015 H. F.-W. Sadrozinski, UC Santa Cruz W43-BZ3-P3 W43-BZ4A-P4 W43-BZ4B-P10 W43-BZ4C-P16 W47-BZ3-P9 W47-BZ4A-P4 W47-BZ4B-P10 W16-BZ3-P6 W16-BZ4A-P4 W16-BZ4B-P10 W16-BZ4C-P16 W16-BZ4D-P22 W42-BZ3-P6 W45-BZ4A-P4 W45-BZ4B-P10 W45-BZ4C-P16 W45-BZ4D W46-BZ3-P6 W49-BZ4A-P4 W49-BZ4B-P10 W49-BZ4C-P16 W49-BZ4D-P22 14 W44-BZ3-P21 W42-BZ4D-P22 5 p-spray only = PT Voltage (Volts) 16 Total pdose = 4e12 Total p-dose = 4e12 Total p-dose = 2e12 60 Zone 3 Total p-dose = 4e12 p-stop only 18 PT Voltage (Volts) 25 0 20 p-stop only = Total p-dose = 4e12 W42-BZ2-P8 • For Pre-rad detectors, the punch-through voltage is dependent on the wafer number (i.e. the total p-dose). • Dependence on the total p-dose is seen after irradiation, higher p-dose means lower PT Voltage. • Zone 3 exhibits similar PT voltage to Zone 4, without the having a complicated PT structure. • Further, Zone 3 shows adequate protection even at high fluences. p-spray + p-stop = 30 PT Voltage (Volts) RPT Rbias p-spray only = W44-BZ4d-P22 • Punch-through Voltage is defined as the voltage where 12 Comments on the Effective Resistance W18-BZ3-P18 1e13neq 2.00E+06 Effective Resistance (Ω) • The effective resistance can also be defined by taking the integral form of the equation given earlier. • This would have the advantage of incorporating the total current that can be drained from the strip to the bias rail and providing the effective resistance for charges to escape through. • The disadvantage to the integral form is that it is less sensitive to the onset of punch-through, so it is less suitable for defining the punch-through voltage. 1.50E+06 -20deg (Differential) -20deg (Integral) 1.00E+06 5.00E+05 -70 -60 -50 -40 -30 -20 0.00E+00 -10 0 Test Voltage (Volts) W18-BZ3-P18 1e13neq Effective Resistance (Ω) 2.00E+06 -70 1.50E+06 -20deg 0deg 20deg 1.00E+06 5.00E+05 -60 -50 -40 -30 -20 0.00E+00 -10 0 • Measurements at different temperatures reveal a clear temperature dependence on the effective resistance. • The temperature dependence seems to come mainly from the polysilicon bias resistor. • The value of the punch-through voltage does not depend on the temperature. Test Voltage (Volts) RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 13 Charge Collection Studies with ATLAS07 n-on-p FZ Silicon Detectors (compiled by A. Affolder) A. A. Affolder, P. P. Allport, H. Brown ,G. Casse, A. Greenall, M. Wormaldt Physics Department, Liverpool University, Liverpool, United Kingdom S. Lindgren, C. Betancourt, G. Bredeson, N. Dawson , J. G. Wright, H. F.-W. Sadrozinski Santa Cruz Institute for Particle Physics, Univ. of California Santa Cruz, CA 95064 USA - - V. Cindro, G. Kramberger, I. Mandic, M. Mikuz Josef Stefan Institute and University of Ljubljan, Slovenia Y. Unno, S. Terada, Y. Ikegami, T. Kohriki Institute of Particle and Nuclear Study, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan K. Hara, H. Hatano, S. Mitsui, M. Yamada University of Tsukuba, Institute of Pure and Applied Sciences, Tsukuba, Ibaraki 3059751, Japan RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 14 Summary of Results from Different Sources 500 V Are these variances large? Is this systematically low HPK data shown from all sites (with annealing corrections, i.e. CCE reduced by 20%+/-10%). Pion irradiation measurements corrected for annealing during run RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 15 15 Liverpool Only Data Correction to remove annealing too strong at lower fluences 500 V • Remove normalization, annealing effects • Results look consistent – Would assume variance due to slight systematic differences in normalizations/annealing corrections RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 16 16 Summary 500 V • NIEL appears to work for charge collection with n-in-p FZ detectors • Micron and HPK consistent over measure fluence range RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 17 17 Conclusions • Good cooperation between ATLAS groups and HPK: 3 pre-series and 2 full series runs in about 2 years. • All HPK detectors have a breakdown voltage that exceeds 900V, exceeding the specifications. •To first order, the interstrip resistance does not depend on the specific zone, but instead depends on the total p-dose of p-impurities on the surface (p-stop + p-spray). • The interstrip capacitance shows little change after irradiation and is dependent on the specific zones. • Zone 5 (narrow metal) has the highest interstrip capacitance after irradiation (Don’t use narrow metal!). • The punch-through voltage depends on the total p-dose in all configurations (p-stop only, p-stop+spray, p-spray only). Wafers with the highest total p-dose have a higher punch-through voltage, which holds true even after irradiation. • After irradiation, Zone 3 detectors (Gap = 70 mm) have a similar punchthrough voltage as Zone 4 detectors, which are made with a specific punchthrough protection structure (Gap = 30 mm) . Needs explanation! • The acceptable punch-through voltage of the Zone 3 sensors with p-stops of 4*1012 cm-2 extends to proton fluences beyond 1015 p/cm2. RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 18 Acknowledgments •We acknowledge the good collaboration with the Hamamatsu Photonics team. • The invaluable assistance of CYRIC and their staff in carrying out the radiation is acknowledged. ATLAS Upgrade Silicon Strip Detector Collaboration: H. Chen, J. Kierstead, Z. Li, D. Lynn , Brookhaven National Laboratory J.R. Carter, L.B.A. Hommels, D. Robinson, University of Cambridge K. Jakobs, M. Köhler, U. Parzefall, Universitat Freiburg A. Clark, D. Ferrere, S. Gonzalez Sevilla, University of Geneva R. Bates, C. Buttar, L. Eklund, V. O'Shea, University of Glasgow Y. Unno, S. Terada, Y. Ikegami, T. Kohriki, KEK A. Chilingarov, H. Fox, Lancaster University A. A. Affolder, P. P. Allport, H. Brown ,G. Casse, A. Greenall, M. Wormald, University of Liverpool V. Cindro, G. Kramberger, I. Mandic, M. Mikuz, Josef Stefan Institute and University of Ljubljana I. Gorelov, M. Hoeferkamp, J. Metcalfe, S. Seidel, K. Toms, University of New Mexico Z. Dolezal, P. Kodys, Charles University in Prague J.Bohm, M.Mikestikova, Academy of Sciences of the Czech Republic C. Betancourt, G. Bredeson, N. Dawson, V. Fadeyev, M. Gerling, A. A. Grillo, S. Lindgren, P. Maddock, F. Martinez-McKinney, H. F.W. Sadrozinski, S. Sattari, A. Seiden, J. Von Wilpert, J. Wright, UC Santa Cruz R. French, S. Paganis, D. Tsionou, The University of Sheffield B. DeWilde, R. Maunu, D. Puldon, R. McCarthy, D. Schamberger, Stony Brook University K. Hara, H. Hatano, S. Mitsui, M. Yamada, N. Hamasaki, University of Tsukuba M. Minano, C. Garcia, C. Lacasta, S. Marti i Garcia , IFIC (Centro Mixto CSIC-UVEG) , and K. Yamamura, S. Kamada, Hamamatsu Photonics K.K. RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 19 RD50 Bet Oct 17, 2006 “Will the "Kramberger effect" be traced to a temperature effect?” Betting was heavily against (all in SFrs) Against Moll 5 Vladimir Cindro 1000 Noman 2 Thor 5 Gregor 5 VladPad 5 Simon 5 Alex? 10 Uli 10 47 Sum 59.75 For Hartmut Thor Panja Maurice Elena VladPad 5 40 kr 3.75 2 10Kopek 2 12.75 Results shown at Vilnius makes it unlikely that temperature is the sole cause. Proposal to pay off the bet in a communal way: Bookie will forgo his usual proceeds (50% of total) and pay for drinks in the Bar tonight at 7 pm RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 20