Download WATKINS - Chabot College

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Engineering 43
Chp 8.[7-8]
AC Analysis
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
Engineering-43: Engineering Circuit Analysis
1
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
KCL & KVL for AC Analysis
 Simple-Circuit Analysis
• AC Version of Ohm’s Law → V = IZ
• Rules for Combining Z and/or Y
• KCL & KVL
• Current and/or Voltage Dividers
 More Complex Circuits
• Nodal Analysis
• Loop or Mesh Analysis
• SuperPosition
Engineering-43: Engineering Circuit Analysis
2
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
Methods of AC Analysis cont.
 More Complex Circuits
• Thevenin’s Theorem
• Norton’s Theorem
• Numerical Techniques
– MATLAB
– SPICE
Engineering-43: Engineering Circuit Analysis
3
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
Example
 For The Ckt At Right,
Find VS if
Vo  8V45
 Solution Plan: GND at
Bot, then Find in Order
• I3 → V1 → I2 → I1 → VS
 I3 First by Ohm
I3 
VO V 
 445 A
2
 Then V1 by Ohm
V1  (2  j 2)I3  8  45  445
 Then I2 by Ohm
I2 
V1
11.314V0

 5.657  90( A)
j 2
290
 Then I1 by KCL
I1  I 2  I 3  5.657  90  445
I1   j5.657  (2.828  j 2.828)( A)
I1  2.828  j 2.829( A)
V1  11.3140(V )
Engineering-43: Engineering Circuit Analysis
4
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
Example cont.
Z eq
 Then VS by Ohm & KVL
VS  2I1  V1  2(2.828  j 2.829)  11.3140
VS  16.97  j5.658(V )
VS  17.888V  18.439
 Note That we have
I1 and VS
 Thus can find the
Circuit’s Equivalent
Impedance
VS
Z eq 
I1
Engineering-43: Engineering Circuit Analysis
5
 Then Zeq
17.888V  18.439
Z eq 
2.828  j 2.829A
Z eq  4.00  j 2.00
Z eq  4.47226.56
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
Nodal Analysis for AC Circuits
 For The Ckt at Right
Find IO
 Use Node Analysis
• Specifically a SuperNode
that Encompasses The
V-Src
V1
V2
V2
 20 

0
1  j1
1 1  j1
 And the SuperNode
Constraint
V2  V1  60
or
V1  V2  60
Engineering-43: Engineering Circuit Analysis
6
 The Relation For IO
V2
IO 
( A)
1
 In SuperNode KCL
Sub for V1
V2  60
V
 20  V2  2  0
1  j1
1  j1
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
Nodal Analysis cont.
 Solving for For V2
 1
1 
6
V2 
1

2


1

j
1
1

j
1
1  j1


 The Complex Arithmetic
V2
(1  j1)  (1  j1)(1  j1)  (1  j1) 2(1  j1)  6

(1  j1)(1  j1)
1  j1
4
V2
 8  j2
1 j
V2 
 Or
8  j 2 1  j   5  j 3
1
4
2
Engineering-43: Engineering Circuit Analysis
7
 Recall
2
V2 V 
IO 
1
3
5
I O    j ( A)
2
2
I O  2.92 A  30.96
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
Loop Analysis for AC Circuits
 Same Ckt, But Different
Approach to Find IO
 Note: IO = –I3
 Constraint: I1 = –2A0
 The Loop Eqns
LOOP 2 :
(1  j )( I1  I 2 )  60  (1  j )( I 2  I 3 )  0
LOOP 3 : (1  j )( I 2  I 3 )  1I 3  0
 Solution is I3 = –IO
 Recall I1 = –2A0
Engineering-43: Engineering Circuit Analysis
8
 Simplify Loop2 & Loop3
L2 : 2 I 2  (1  j ) I 3  6  (1  j ) I1
2 I 2  (1  j ) I 3  6  (1  j )( 2)
L3 : (1  j ) I 2  (2  j ) I 3  0
 Two Eqns In Two
Unknowns
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
Loop Analysis cont
 Isolating I3
(1  j)
2

 2(2  j ) I 3  (1  j )(8  2 j )
I2
 Then The Solution
I3 
10  6 j
4
 I0 
5 3
 j ( A)
2 2
 Could also use a
SuperMesh to Avoid
the Current Source
CONSTRAINT : I 2  I1  20
SUPERMESH : (1  j )I1  60  1(I 2  I 3 )  0
MESH 3 : 1(I 3  I 2 )  (1  j )I 3  0
Engineering-43: Engineering Circuit Analysis
9
 The Next Step is to
Solve the 3 Eqns for
I2 and I3
 So Then Note
IO  I 2  I3
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
Recall Source SuperPosition
I
=
I L2
1
L
V
1
L
 Circuit With Current
Source Set To Zero
• OPEN Ckt
 By Linearity
I L  I1L  I 2L
Engineering-43: Engineering Circuit Analysis
10
+
VL2
 Circuit with Voltage
Source set to Zero
• SHORT Ckt
VL  VL1  VL2
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
AC Ckt Source Superposition
 Same Ckt, But Use
Source SuperPosition
to Find IO
 Deactivate V-Source
 The Reduced Ckt
 Combine The Parallel
(1  j )(1  j )
Impedances
Z '  (1  j ) || (1  j ) 
1
(1  j )  (1  j )
Engineering-43: Engineering Circuit Analysis
11
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
AC Source Superposition cont
 Find I-Src Contribution
to IO by I-Divider
Z '  1
I '0  20
 The V-Src Contribution
by V-Divider
1
 10( A)
11
 Now Deactivate the
I-Source (open it)
1 1  j 
Z "  1 || (1  j ) 
1  1  j 
Engineering-43: Engineering Circuit Analysis
12
Z "  1 || (1  j )
"
Z
V1"  "
60(V )
Z 1 j
Z"
I  V 1  "
60( A)
Z 1 j
"
O
"
1
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
AC Source Superposition cont.2
 Sub for Z”
1 j
2 j
"
I0 
6 ( A)
1 j
1 j
2 j
1 j
I 
6
(1  j )  3  j
"
0
6 6
I   j ( A)
4 4
"
0
 Finally SuperPose the
Response Components
Engineering-43: Engineering Circuit Analysis
13
 The Total Response
3 3
I 0  I  I  1   
2 2
'
0
"
0
5 3
 I 0   j ( A)
2 2
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt

j

Multiple Frequencies
 When Sources of Differing FREQUENCIES
excite a ckt then we MUST use Superposition
for every set of sources with NON-EQUAL
FREQUENCIES
 An Example
V2
V1
 We Can Denote the Sources as Phasors
V1  100V0
& V2  50V  10
 But canNOT COMBINE them due to
DIFFERENT frequencies
Engineering-43: Engineering Circuit Analysis
14
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
Multiple Frequencies cont.1
 Must Use
SuperPosition for
EACH Different ω
V1
 V1 first (ω = 10 r/s)
Z L ,10  j 101
 V2 next (ω = 20 r/s)
Z L , 20  j 201
 The Frequency-1
Domain
Phasor-Diagram
Engineering-43: Engineering Circuit Analysis
15
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
Multiple Frequencies cont.2
 The Frequency-2
Domain
Phasor-Diagram
V2
 Recover the Time
Domain Currents

 Finally Superpose


it   i' t   i" t   7.07 A cos 10t  45  2.24 A cos 20t  73.43
– Note the MINUS sign from V-src Polarity
Engineering-43: Engineering Circuit Analysis
16
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt

Source Transformation
 Source transformation is a good tool to reduce
complexity in a circuit
• WHEN IT CAN BE APPLIED
 “ideal sources” are not good models for
real behavior of sources
• A real battery does not produce infinite current
when short-circuited
 Resistance → Impedance Analogy
ZV
+
-
RV
VS
a
ZI
a
RI
b
IS
b
THE MODELS ARE EQUIVALENT S WHEN
ZV  Z I  Z
RV  RI  R
VS  RI S
VS  ZI S
Improved model
Improved model
for voltage source for current source
Engineering-43: Engineering Circuit Analysis
17
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
Source Transformation
 Same Ckt, But Use
Source Transformation
to Find IO
 Start With I-Src
 Then the Reduced Circuit
V ' 8  2 j
 Next Combine the Voltage
Sources And Xform
Engineering-43: Engineering Circuit Analysis
18
VS'
8 2 j
IS 

Z Series 1  j
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
Source Transformation cont
 The Reduced Ckt
 Now Combine the
Series-Parallel
Impedances
IS 
8 2 j
1 j
Z p  (1  j ) || (1  j )  1
 The Reduced Ckt
Zp
 IO by I-Divider
1 4  j 4  j 1  j 
IO  I S  

2 1  j 1  j 1  j 
 IO 
5  j3
2
Engineering-43: Engineering Circuit Analysis
19

Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
5  j3
2
Thevenin’s Equivalence Theorem
LINEAR CIRCUIT
May contain
independent and
dependent sources
with their controlling
variables
PART A
RTH


vTH

i
a
vO
b
_

i
LINEAR CIRCUIT
PART A
b
 Resistance to
Impedance
Analogy
vO  VO
i I
a
vO
_
LINEAR CIRCUIT
May contain
independent and
dependent sources
with their controlling
variables
PART B
PART B
VTH  VTH
RTH  ZTH
Thevenin Equivalent Circuit
for PART A
Engineering-43: Engineering Circuit Analysis
20
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
AC Thevenin Analysis
 Same Circuit,
Find IO by Thevenin
 Take as “Part B” Load
the 1Ω Resistor Thru
Which IO Flows
 The Thevenin Ckt
 Now Use Src-Xform
Vx  2 A0  (1  j )
Vx  (2  j 2)V
Engineering-43: Engineering Circuit Analysis
21
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
AC Thevenin Analysis cont.
 The Xformed
Circuit
 Another
Source
Xform
 Now the Combined 8+j2
Source and all The
Impedance are
IN SERIES
8 2j
 Find ZTH by
Deactivating the 8+j2
V-Source
• Thus VOC Determined by
V-Divider
VOC
1 j
10  j 6

(8  2 j ) 
(1  j )  (1  j )
2
Engineering-43: Engineering Circuit Analysis
22
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
AC Thevenin Analysis cont.2
 Then ZTH
ZTH  (1  j ) || (1  j )  1
 So The Thevenin
Equivalent Circuit
 IO is Now Simple
VOC
VTH
IO 

Z TH  1 1  1
53j
IO 
( A)
2
Engineering-43: Engineering Circuit Analysis
23
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
Norton’s Equivalence Theorem
LINEAR CIRCUIT
May contain
independent and
dependent sources
with their controlling
variables
PART A

RN
a
vO
b
_

iN
i
i
LINEAR CIRCUIT
PART A
b
 Resistance to
Impedance
Analogy
vO  VO
i I
a
vO
_
LINEAR CIRCUIT
May contain
independent and
dependent sources
with their controlling
variables
PART B
PART B
iN  I N
RN  Z N
Norton Equivalent Circuit
for PART A
Engineering-43: Engineering Circuit Analysis
24
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
AC Norton Analysis
 Same Circuit,
Find IO by Norton
 Take as the “Part B”
Load the 1Ω Resistor
Thru Which IO Flows
 Shorting the Load
Yields Isc= IN
 Possible techniques to
Find ISC:
• Loops or Nodes
• Source Transformation
• Superposition
 Choose Nodes
Engineering-43: Engineering Circuit Analysis
25
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
AC Norton Analysis cont
 Short-Ckt Node On The
Norton Circuit
I SC
60 8  2 j
 20 

( A)
1 j
1 j
 As Before Deactivate
Srcs to Find ZN=ZTH
 Use ISC=IN, and
ZN to Find IO
• See Next Slide
ZTH  (1  j ) || (1  j )  1
Engineering-43: Engineering Circuit Analysis
26
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
AC Norton Analysis cont.2
 The Norton
Equivalent Circuit
with Load
Reattached
 Find IO By I-Divider
I O  I SC
I SC 4  j
1


ZN 1 11 1 j
4  j 1 j
IO 
1 j 1 j
IO


4  j    4 j  j 2  5  j 3


12  j 2
Engineering-43: Engineering Circuit Analysis
27
 Same as all the Others
2
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
Example
V1
 Use Nodal Analysis
to Find VO
 The KCL at Node-1
V1  1230 V1 V1 V1  VO
 

0
2
1 j2
j
 Now KCL At VO
VO  V1 VO

0
j
1
 V1  1  j VO
 Multiply Node-1 KCL
by 2j to Obtain
Engineering-43: Engineering Circuit Analysis
28
j (V1  1230)  j 2V1  V1  2(V1  VO )  0
 Subbing for V1 Yields
2VO  (1  2  2 j  j )(1  j )VO  12 j30
 Factoring for VO Yields
(2  (1  3 j )(1  j )) VO  1901230
 Isolating VO
12120
12120
VO 

44j
5.65745
VO  2.121V75
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
Example Alternative
 This Time Use Thevenin
to Find VO
 Take Cap & Res in
Series as the Load
 Deactivate V-Src
to Find ZTH
4 j 3
2 3  j 2
j 42  j 6 
Z TH  2 || 1 || j 2 
Z TH
Z TH
j4

 2
2  j6
2  62
 0.6  j 0.2
Engineering-43: Engineering Circuit Analysis
29
 Find VOC by V-Divider
1 || j 2
1230
2  (1 || j 2)
j2

1230
2(1  2 j )  2 j
VOC 
VOC
24120 12120

26j
1 3 j
 3.795V48.435
VOC 
VOC
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
Example Alternative cont.
 Now Apply the
Thevenin Equivalent
Circuit to the Load
 Calculate VO By
V-Divider
VO 
ZTH
 j1
ZTH
0 .6  j 0 . 2
VOC
+
-

1

1
VOC
1 j
1
 Same as Before
VOC
0.6  j 0.2  1  j
1
VO 
VOC
1.6  j 0.8
VO  0.55926.565  3.795V48.435
VO 

VO  2.121V75.00
Engineering-43: Engineering Circuit Analysis
30
V0
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
WhiteBoard Work
 Let’s Work This Nice
Problem to Find VO
Engineering-43: Engineering Circuit Analysis
31
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt
Related documents