Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Engineering 43 Chp 8.[7-8] AC Analysis Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected] Engineering-43: Engineering Circuit Analysis 1 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt KCL & KVL for AC Analysis Simple-Circuit Analysis • AC Version of Ohm’s Law → V = IZ • Rules for Combining Z and/or Y • KCL & KVL • Current and/or Voltage Dividers More Complex Circuits • Nodal Analysis • Loop or Mesh Analysis • SuperPosition Engineering-43: Engineering Circuit Analysis 2 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt Methods of AC Analysis cont. More Complex Circuits • Thevenin’s Theorem • Norton’s Theorem • Numerical Techniques – MATLAB – SPICE Engineering-43: Engineering Circuit Analysis 3 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt Example For The Ckt At Right, Find VS if Vo 8V45 Solution Plan: GND at Bot, then Find in Order • I3 → V1 → I2 → I1 → VS I3 First by Ohm I3 VO V 445 A 2 Then V1 by Ohm V1 (2 j 2)I3 8 45 445 Then I2 by Ohm I2 V1 11.314V0 5.657 90( A) j 2 290 Then I1 by KCL I1 I 2 I 3 5.657 90 445 I1 j5.657 (2.828 j 2.828)( A) I1 2.828 j 2.829( A) V1 11.3140(V ) Engineering-43: Engineering Circuit Analysis 4 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt Example cont. Z eq Then VS by Ohm & KVL VS 2I1 V1 2(2.828 j 2.829) 11.3140 VS 16.97 j5.658(V ) VS 17.888V 18.439 Note That we have I1 and VS Thus can find the Circuit’s Equivalent Impedance VS Z eq I1 Engineering-43: Engineering Circuit Analysis 5 Then Zeq 17.888V 18.439 Z eq 2.828 j 2.829A Z eq 4.00 j 2.00 Z eq 4.47226.56 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt Nodal Analysis for AC Circuits For The Ckt at Right Find IO Use Node Analysis • Specifically a SuperNode that Encompasses The V-Src V1 V2 V2 20 0 1 j1 1 1 j1 And the SuperNode Constraint V2 V1 60 or V1 V2 60 Engineering-43: Engineering Circuit Analysis 6 The Relation For IO V2 IO ( A) 1 In SuperNode KCL Sub for V1 V2 60 V 20 V2 2 0 1 j1 1 j1 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt Nodal Analysis cont. Solving for For V2 1 1 6 V2 1 2 1 j 1 1 j 1 1 j1 The Complex Arithmetic V2 (1 j1) (1 j1)(1 j1) (1 j1) 2(1 j1) 6 (1 j1)(1 j1) 1 j1 4 V2 8 j2 1 j V2 Or 8 j 2 1 j 5 j 3 1 4 2 Engineering-43: Engineering Circuit Analysis 7 Recall 2 V2 V IO 1 3 5 I O j ( A) 2 2 I O 2.92 A 30.96 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt Loop Analysis for AC Circuits Same Ckt, But Different Approach to Find IO Note: IO = –I3 Constraint: I1 = –2A0 The Loop Eqns LOOP 2 : (1 j )( I1 I 2 ) 60 (1 j )( I 2 I 3 ) 0 LOOP 3 : (1 j )( I 2 I 3 ) 1I 3 0 Solution is I3 = –IO Recall I1 = –2A0 Engineering-43: Engineering Circuit Analysis 8 Simplify Loop2 & Loop3 L2 : 2 I 2 (1 j ) I 3 6 (1 j ) I1 2 I 2 (1 j ) I 3 6 (1 j )( 2) L3 : (1 j ) I 2 (2 j ) I 3 0 Two Eqns In Two Unknowns Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt Loop Analysis cont Isolating I3 (1 j) 2 2(2 j ) I 3 (1 j )(8 2 j ) I2 Then The Solution I3 10 6 j 4 I0 5 3 j ( A) 2 2 Could also use a SuperMesh to Avoid the Current Source CONSTRAINT : I 2 I1 20 SUPERMESH : (1 j )I1 60 1(I 2 I 3 ) 0 MESH 3 : 1(I 3 I 2 ) (1 j )I 3 0 Engineering-43: Engineering Circuit Analysis 9 The Next Step is to Solve the 3 Eqns for I2 and I3 So Then Note IO I 2 I3 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt Recall Source SuperPosition I = I L2 1 L V 1 L Circuit With Current Source Set To Zero • OPEN Ckt By Linearity I L I1L I 2L Engineering-43: Engineering Circuit Analysis 10 + VL2 Circuit with Voltage Source set to Zero • SHORT Ckt VL VL1 VL2 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt AC Ckt Source Superposition Same Ckt, But Use Source SuperPosition to Find IO Deactivate V-Source The Reduced Ckt Combine The Parallel (1 j )(1 j ) Impedances Z ' (1 j ) || (1 j ) 1 (1 j ) (1 j ) Engineering-43: Engineering Circuit Analysis 11 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt AC Source Superposition cont Find I-Src Contribution to IO by I-Divider Z ' 1 I '0 20 The V-Src Contribution by V-Divider 1 10( A) 11 Now Deactivate the I-Source (open it) 1 1 j Z " 1 || (1 j ) 1 1 j Engineering-43: Engineering Circuit Analysis 12 Z " 1 || (1 j ) " Z V1" " 60(V ) Z 1 j Z" I V 1 " 60( A) Z 1 j " O " 1 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt AC Source Superposition cont.2 Sub for Z” 1 j 2 j " I0 6 ( A) 1 j 1 j 2 j 1 j I 6 (1 j ) 3 j " 0 6 6 I j ( A) 4 4 " 0 Finally SuperPose the Response Components Engineering-43: Engineering Circuit Analysis 13 The Total Response 3 3 I 0 I I 1 2 2 ' 0 " 0 5 3 I 0 j ( A) 2 2 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt j Multiple Frequencies When Sources of Differing FREQUENCIES excite a ckt then we MUST use Superposition for every set of sources with NON-EQUAL FREQUENCIES An Example V2 V1 We Can Denote the Sources as Phasors V1 100V0 & V2 50V 10 But canNOT COMBINE them due to DIFFERENT frequencies Engineering-43: Engineering Circuit Analysis 14 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt Multiple Frequencies cont.1 Must Use SuperPosition for EACH Different ω V1 V1 first (ω = 10 r/s) Z L ,10 j 101 V2 next (ω = 20 r/s) Z L , 20 j 201 The Frequency-1 Domain Phasor-Diagram Engineering-43: Engineering Circuit Analysis 15 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt Multiple Frequencies cont.2 The Frequency-2 Domain Phasor-Diagram V2 Recover the Time Domain Currents Finally Superpose it i' t i" t 7.07 A cos 10t 45 2.24 A cos 20t 73.43 – Note the MINUS sign from V-src Polarity Engineering-43: Engineering Circuit Analysis 16 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt Source Transformation Source transformation is a good tool to reduce complexity in a circuit • WHEN IT CAN BE APPLIED “ideal sources” are not good models for real behavior of sources • A real battery does not produce infinite current when short-circuited Resistance → Impedance Analogy ZV + - RV VS a ZI a RI b IS b THE MODELS ARE EQUIVALENT S WHEN ZV Z I Z RV RI R VS RI S VS ZI S Improved model Improved model for voltage source for current source Engineering-43: Engineering Circuit Analysis 17 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt Source Transformation Same Ckt, But Use Source Transformation to Find IO Start With I-Src Then the Reduced Circuit V ' 8 2 j Next Combine the Voltage Sources And Xform Engineering-43: Engineering Circuit Analysis 18 VS' 8 2 j IS Z Series 1 j Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt Source Transformation cont The Reduced Ckt Now Combine the Series-Parallel Impedances IS 8 2 j 1 j Z p (1 j ) || (1 j ) 1 The Reduced Ckt Zp IO by I-Divider 1 4 j 4 j 1 j IO I S 2 1 j 1 j 1 j IO 5 j3 2 Engineering-43: Engineering Circuit Analysis 19 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt 5 j3 2 Thevenin’s Equivalence Theorem LINEAR CIRCUIT May contain independent and dependent sources with their controlling variables PART A RTH vTH i a vO b _ i LINEAR CIRCUIT PART A b Resistance to Impedance Analogy vO VO i I a vO _ LINEAR CIRCUIT May contain independent and dependent sources with their controlling variables PART B PART B VTH VTH RTH ZTH Thevenin Equivalent Circuit for PART A Engineering-43: Engineering Circuit Analysis 20 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt AC Thevenin Analysis Same Circuit, Find IO by Thevenin Take as “Part B” Load the 1Ω Resistor Thru Which IO Flows The Thevenin Ckt Now Use Src-Xform Vx 2 A0 (1 j ) Vx (2 j 2)V Engineering-43: Engineering Circuit Analysis 21 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt AC Thevenin Analysis cont. The Xformed Circuit Another Source Xform Now the Combined 8+j2 Source and all The Impedance are IN SERIES 8 2j Find ZTH by Deactivating the 8+j2 V-Source • Thus VOC Determined by V-Divider VOC 1 j 10 j 6 (8 2 j ) (1 j ) (1 j ) 2 Engineering-43: Engineering Circuit Analysis 22 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt AC Thevenin Analysis cont.2 Then ZTH ZTH (1 j ) || (1 j ) 1 So The Thevenin Equivalent Circuit IO is Now Simple VOC VTH IO Z TH 1 1 1 53j IO ( A) 2 Engineering-43: Engineering Circuit Analysis 23 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt Norton’s Equivalence Theorem LINEAR CIRCUIT May contain independent and dependent sources with their controlling variables PART A RN a vO b _ iN i i LINEAR CIRCUIT PART A b Resistance to Impedance Analogy vO VO i I a vO _ LINEAR CIRCUIT May contain independent and dependent sources with their controlling variables PART B PART B iN I N RN Z N Norton Equivalent Circuit for PART A Engineering-43: Engineering Circuit Analysis 24 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt AC Norton Analysis Same Circuit, Find IO by Norton Take as the “Part B” Load the 1Ω Resistor Thru Which IO Flows Shorting the Load Yields Isc= IN Possible techniques to Find ISC: • Loops or Nodes • Source Transformation • Superposition Choose Nodes Engineering-43: Engineering Circuit Analysis 25 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt AC Norton Analysis cont Short-Ckt Node On The Norton Circuit I SC 60 8 2 j 20 ( A) 1 j 1 j As Before Deactivate Srcs to Find ZN=ZTH Use ISC=IN, and ZN to Find IO • See Next Slide ZTH (1 j ) || (1 j ) 1 Engineering-43: Engineering Circuit Analysis 26 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt AC Norton Analysis cont.2 The Norton Equivalent Circuit with Load Reattached Find IO By I-Divider I O I SC I SC 4 j 1 ZN 1 11 1 j 4 j 1 j IO 1 j 1 j IO 4 j 4 j j 2 5 j 3 12 j 2 Engineering-43: Engineering Circuit Analysis 27 Same as all the Others 2 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt Example V1 Use Nodal Analysis to Find VO The KCL at Node-1 V1 1230 V1 V1 V1 VO 0 2 1 j2 j Now KCL At VO VO V1 VO 0 j 1 V1 1 j VO Multiply Node-1 KCL by 2j to Obtain Engineering-43: Engineering Circuit Analysis 28 j (V1 1230) j 2V1 V1 2(V1 VO ) 0 Subbing for V1 Yields 2VO (1 2 2 j j )(1 j )VO 12 j30 Factoring for VO Yields (2 (1 3 j )(1 j )) VO 1901230 Isolating VO 12120 12120 VO 44j 5.65745 VO 2.121V75 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt Example Alternative This Time Use Thevenin to Find VO Take Cap & Res in Series as the Load Deactivate V-Src to Find ZTH 4 j 3 2 3 j 2 j 42 j 6 Z TH 2 || 1 || j 2 Z TH Z TH j4 2 2 j6 2 62 0.6 j 0.2 Engineering-43: Engineering Circuit Analysis 29 Find VOC by V-Divider 1 || j 2 1230 2 (1 || j 2) j2 1230 2(1 2 j ) 2 j VOC VOC 24120 12120 26j 1 3 j 3.795V48.435 VOC VOC Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt Example Alternative cont. Now Apply the Thevenin Equivalent Circuit to the Load Calculate VO By V-Divider VO ZTH j1 ZTH 0 .6 j 0 . 2 VOC + - 1 1 VOC 1 j 1 Same as Before VOC 0.6 j 0.2 1 j 1 VO VOC 1.6 j 0.8 VO 0.55926.565 3.795V48.435 VO VO 2.121V75.00 Engineering-43: Engineering Circuit Analysis 30 V0 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt WhiteBoard Work Let’s Work This Nice Problem to Find VO Engineering-43: Engineering Circuit Analysis 31 Bruce Mayer, PE [email protected] • ENGR-44_Lec-08-3_AC-KVL-KCL.ppt