Download Basic Concepts - Oakland University

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
AC Power
Discussion D9.3
Chapter 5
Steady-State Power
•
•
•
•
•
•
Instantaneous Power
Average Power
Effective or RMS Values
Power Factor
Complex Power
Residential AC Power Circuits
Instantaneous Power
v(t )  VM cos t  v 
i(t )  I M cos t  i 
p(t )  v(t )i(t )  VM I M cos t  v  cos t  i 
VM I M
cos  v  i   cos  2t  v  i  
p(t ) 
2
Note twice the frequency
Average Power
T  2 
1
P
T

t0  T
t0
1
P
T

1
p(t )dt 
T
t0 T
t0

t0 T
t0
VM I M cos t   v  cos t  i  dt
VM I M
cos v  i   cos  2t   v  i   dt
2
P  1 VM I M cos v  i 
2
Purely resistive circuit
Purely reactive circuit
 v  i  0
v  i  90
P  1 VM I M
2
P  1 VM I M cos 90  0
2
 
Effective or RMS Values
We define the effective or rms value of a periodic current
(voltage) source to be the dc current (voltage) that delivers the
same average power to a resistor.
1
PI R
T
2
eff
I eff

t0  T
t0
i 2 (t )Rdt
1 t0 T 2

i (t )dt

T t0
I eff  I rms
Veff2
1
P

R T

t0 T
t0
v 2 (t )
dt
R
1 t0 T 2
Veff 
v (t )dt

T t0
root-mean-square
Veff  Vrms
Effective or RMS Values
Vrms
Using
Vrms
Vrms
1 t0 T 2

v (t )dt

T t0
v(t )  VM cos t  v 
cos   1  1 cos 2
2
2
2

 VM 
 2

 VM 
 2


2 
0
2 
0
T  2 
and
 1  1 cos  2t  2v dt 
2
 2
 
1 
dt 
2 
1
2

 VM 
 2
2 
t
 
20



1
2
1
2
VM

2
Power Factor
Recall Average Power
Vrms
VM

2
P  1 VM I M cos v  i 
2
IM
I rms 
2
P  Vrms I rms cos v  i 
Power factor
P
PF 
 cos  v  i   cos  ZL
Vrms I rms
Power factor angle
Note that I rms
 ZL  v  i
P

Vrms PF
Thus, an industrial load that consumes
P watts with a high PF from a Vrms volt
2
R line losses.
line will have lower I rms
Complex Power
Complex Power
S = Vrms Irms

I rms
 complex conjugate of I rms
 rms  I r  jIi  I rms i
rms  I r  jI i  I rms   i
S = Vrms v I rms   i  Vrms I rms  v  i 
S = P  jQ
P  Re(S)  Vrms I rms cos v  i 
Real, average power
Q  Im(S)  Vrms I rms sin v  i 
Imaginary, quadrature power
Residential Power Systems
Read Section 5-8, pages 216 - 219
Related documents