Download Geen diatitel

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
BJT, Bipolar Junction Transisor
Base Current
Controls
Output current
Bollen
1
AGENDA
BJT transistorman
Transistor types
Bipolar Junction Transistor
BJT models
parameters
water model
NPN and PNP
operation modes
switch open
switch closed
Bollen
BJT
linear, controlled current source
active operation
characteristics
DC input characteristics
ac input characteristics
BJT DC biasing circuits
base bias
base bias + collector feedback
base bias + emitter feedback
voltage divider
2
BJT, transistor man
Bollen
3
Transistor
Types
BJT =
Bipolar Junction Transistor
FET =
Field Effect Transistor
Bollen
Output current controlled
by input current
Output current controlled
by input voltage
4
BJT, Bipolar Junction Transisor
Transistor = Transfer Resistor
BE Forward bias,
So low ohmic
Bollen
BC Reverse bias
high ohmic
5
BJT, Bipolar Junction Transisor
Emitter = Sent electrons
Base
= Base
Collector = Get electrons
Bollen
6
BJT, Models
Bollen
7
BJT, parameters
Bollen
8
BJT, Water model
Bollen
9
BJT, Water model
Bollen
10
BJT, NPN and PNP
Bollen
11
BJT, Operation modes
Cut-off and saturation;
BJT is used as a switch
Active operation
Quiecent Point;
BJT is used as a
controlled
current source,
or analog amplifier
Bollen
12
BJT, Switch open
Bollen
13
BJT, Switch closed
Bollen
14
BJT, Lineair, controlled current source
Bollen
15
BJT, active operation
Bollen
16
BJT, characteristics
DC model; Vbe = 0V7
ac model; re = 26mV/Ie
Bollen
DC model ac model
Ube, Uce, Ic, Ib, Ie Capitals
ube, uce, ic, ib, ie Low cases
17
BJT, DC input characteristics
Vbe = 0V7
Bollen
18
BJT, AC input characteristics
re = 26mV/Ic
The dynamic resistor can be
calculated by the DC current Ic
Bollen
19
BJT, characteristics
Bollen
20
BJT, DC biasing circuits
Bollen
A base bias
B base bias + emitter feedback
C base bias + collector feedback
D voltage divider
21
BJT, base bias, introduction
Base current determined by Vcc, Rb and Vbe
Bollen
22
BJT, base bias
Vcc  U Rb  U be
Vcc  I b Rb  U be
Calculate Ib and then Ic
Ic    Ib
Bollen
Ic directly dependent on ß variation
So, for stability a “bad” circuit
23
BJT, base bias load line
Q-point
= Quiecient point
= Working point
Load line is the loading of the transistor seen from Uce (>0V7)
Vcc and Rc determines the;
“open voltage” and the “short circuit current” 24
Bollen
BJT, base bias load line
Reliable circuit
= Q-point stability
Load line is the loading of the transistor seen from Uce (>0V7)
Vcc and Rc determines the;
“open voltage” and the “short circuit current” 25
Bollen
BJT, base bias load line
Vce always > 0V7
BC junction REVERSE
If Rc too big, transistor in saturation;
then;
Bollen
26
BJT, base bias load line
Vce always > 0V7
BC junction REVERSE
If Vcc too small, transistor in saturation;
then;
Bollen
27
BJT, base bias example
Calculate;
I b, I c
URc, Uc, Uce
Draw output caracteristic
Calculate now;
Ib = 47 uA, Ic = 2,35 mA,
URc = 5,17 V, Uc = 6,83 V, Uce = 6,83 V
Uce (for ß = 40) = 7,86 Ξ 15 %
Bollen
Uce if ß = 40
How many % did Uce Change
28
BJT, base bias example
Ib = 33 uA, Ic = 2,9 mA
URc = 7,9 V, Uc = 8,1 V
Bollen
Rb = 282,5 kΩ, Ic = 3,2 mA,
Rc = 1,855 kΩ
29
BJT, base bias example
ß = 200, VRc = 8,8 V
Vcc = 16 VRb = 765 kΩ
Bollen
30
BJT, base bias + emitter feedback
Base current determined by Vcc, Rb, Vbe and Ve
More stable for ß variations, than base bias.
Bollen
31
BJT, base bias + emitter feedback
Vcc  U Rb  U be  U Re
Vcc  I b Rb  U be     1 I bU Re
Always calculate in the smallest current Ib !!
VRc  I c Rc
Vc  Vcc  I c Rc
Ve  I e Re
Vce  Vc  Ve
Bollen
32
BJT, base bias + emitter feedback
Load line is the loading of the transistor seen from Uce (>0V7)
Vcc, Rc and Re determines the;
“open voltage” and the “short circuit current” 33
Bollen
BJT, base bias + emitter feedback example
Calculate;
I b, I c
URc, Uc, Ue, Uce
Draw output caracteristic
Ib = 6,2 uA, Ic = 0,74 mA,
URc = 8,9 V, Uc = 7,1 V, Ue =-0,9 V, Uce = 8,0 V
Bollen
34
BJT, base bias + emitter feedback example
Calculate;
I b, I e
URe, Ue, Uce
Draw output caracteristic
Ib = 24 uA, Ie = 2,9 mA,
URc = 3,5 V, Ue = -2,5 V, Uce = 2,5 V
Bollen
35
BJT, base bias + collector/emitter feedback
If Ic >
then Uc <
then Ib <
Bollen
If Ic >
then Uc <
and Ue >
then Ib <
36
BJT, base bias + collector feedback
Vcc  U Rc  U Rb  U be
Vcc     1 I b Rc  I b Rb  U be
Always calculate in the smallest current Ib !!
The current through Rc is not Ic but Ic + Ib,
so (β+1)Ib !!!
If Ic rises for any reason, then Uc falls and
also Ib decreases, so then Ic decreases
Bollen
37
BJT, base bias collector feedback example
Calculate;
Ib, ß, Ic
Draw output caracteristic
Ib = 13 uA, ß = 196, Ic = 2,5 mA
Bollen
38
BJT, base bias collector/emitter feedback
Vcc  U Rc  U Rb  U be  U Re
Vcc     1 I b Rc
 I b Rb
 U be
    1 I b Re
Always calculate in the smallest current Ib !!
Bollen
39
BJT, base bias collector/emitter feedback ex
Calculate;
I b, I e
URc, Uc, Ue, Uce
Draw output caracteristic
Ib = 11,8 uA, Ie = 1,1 mA
URc = 5,2 V, Uc = 4,8 V
Ue = 1,3 V, Uce = 3,5 V
Bollen
40
BJT, voltage divider
Vb is a stable voltage - 0,7 V =
so Ve is a stable voltage
Ie is determined by Ve/ Re
Ic = Ie . ß/(ß+1)
Ic is very stable and nearly
independent to ß variation, as
long as ß is BIG in value
2 methods of calculating Ic
- neglegting Ib, use voltage divider
- not neglecting Ib and use thevenin
Bollen
41
BJT, voltage divider, neglect Ib
R2
Vb 
Vcc
R1  R2
Ve  Vb  0V 7
Ve
Ie 
Re
So neglegt Ib to R2,
or in general Ri >> R2
In practice 10 times bigger
Bollen
Ic 

 1
Ie
42
BJT, voltage divider, exact, thevenin
Thevenin resistance
R1 // R2
62k // 9k1= 7k9
Thevenin voltage Vth 
R2
Vcc
R1  R2
9k1
Vth 
16  2V 0
62k  9k1
Bollen
43
BJT, voltage divider, exact, thevenin
7k9
2V0
Vth  I b Rth  Vbe     1 I b Re
2, 0  I b 7k 9  0, 7   80  1 I b 0, 68k
Bollen
Ib = 20 uA
44
BJT, voltage divider, example
Thevenin resistance = 6k8
Thevenin voltage
= 3V1
Ib = 18,8 uA
Ic = 2,25 mA
re = 11,5 Ω
URc = 7V4
Uc = 10V6
Ue = 2V3
Uce = 5V1
Bollen
45
BJT, voltage divider, example
Thevenin resistance = 255k
Thevenin voltage
= 0V0
Ib = 14,3 uA
Ic = 1,9 mA
re = 14 Ω
URc = 17V3
Uc = 0V7
Ue = -3V7
Uce = 4V4
Bollen
46
BJT
Bollen
47
BJT
Bollen
48
Related documents