Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
BJT, Bipolar Junction Transisor Base Current Controls Output current Bollen 1 AGENDA BJT transistorman Transistor types Bipolar Junction Transistor BJT models parameters water model NPN and PNP operation modes switch open switch closed Bollen BJT linear, controlled current source active operation characteristics DC input characteristics ac input characteristics BJT DC biasing circuits base bias base bias + collector feedback base bias + emitter feedback voltage divider 2 BJT, transistor man Bollen 3 Transistor Types BJT = Bipolar Junction Transistor FET = Field Effect Transistor Bollen Output current controlled by input current Output current controlled by input voltage 4 BJT, Bipolar Junction Transisor Transistor = Transfer Resistor BE Forward bias, So low ohmic Bollen BC Reverse bias high ohmic 5 BJT, Bipolar Junction Transisor Emitter = Sent electrons Base = Base Collector = Get electrons Bollen 6 BJT, Models Bollen 7 BJT, parameters Bollen 8 BJT, Water model Bollen 9 BJT, Water model Bollen 10 BJT, NPN and PNP Bollen 11 BJT, Operation modes Cut-off and saturation; BJT is used as a switch Active operation Quiecent Point; BJT is used as a controlled current source, or analog amplifier Bollen 12 BJT, Switch open Bollen 13 BJT, Switch closed Bollen 14 BJT, Lineair, controlled current source Bollen 15 BJT, active operation Bollen 16 BJT, characteristics DC model; Vbe = 0V7 ac model; re = 26mV/Ie Bollen DC model ac model Ube, Uce, Ic, Ib, Ie Capitals ube, uce, ic, ib, ie Low cases 17 BJT, DC input characteristics Vbe = 0V7 Bollen 18 BJT, AC input characteristics re = 26mV/Ic The dynamic resistor can be calculated by the DC current Ic Bollen 19 BJT, characteristics Bollen 20 BJT, DC biasing circuits Bollen A base bias B base bias + emitter feedback C base bias + collector feedback D voltage divider 21 BJT, base bias, introduction Base current determined by Vcc, Rb and Vbe Bollen 22 BJT, base bias Vcc U Rb U be Vcc I b Rb U be Calculate Ib and then Ic Ic Ib Bollen Ic directly dependent on ß variation So, for stability a “bad” circuit 23 BJT, base bias load line Q-point = Quiecient point = Working point Load line is the loading of the transistor seen from Uce (>0V7) Vcc and Rc determines the; “open voltage” and the “short circuit current” 24 Bollen BJT, base bias load line Reliable circuit = Q-point stability Load line is the loading of the transistor seen from Uce (>0V7) Vcc and Rc determines the; “open voltage” and the “short circuit current” 25 Bollen BJT, base bias load line Vce always > 0V7 BC junction REVERSE If Rc too big, transistor in saturation; then; Bollen 26 BJT, base bias load line Vce always > 0V7 BC junction REVERSE If Vcc too small, transistor in saturation; then; Bollen 27 BJT, base bias example Calculate; I b, I c URc, Uc, Uce Draw output caracteristic Calculate now; Ib = 47 uA, Ic = 2,35 mA, URc = 5,17 V, Uc = 6,83 V, Uce = 6,83 V Uce (for ß = 40) = 7,86 Ξ 15 % Bollen Uce if ß = 40 How many % did Uce Change 28 BJT, base bias example Ib = 33 uA, Ic = 2,9 mA URc = 7,9 V, Uc = 8,1 V Bollen Rb = 282,5 kΩ, Ic = 3,2 mA, Rc = 1,855 kΩ 29 BJT, base bias example ß = 200, VRc = 8,8 V Vcc = 16 VRb = 765 kΩ Bollen 30 BJT, base bias + emitter feedback Base current determined by Vcc, Rb, Vbe and Ve More stable for ß variations, than base bias. Bollen 31 BJT, base bias + emitter feedback Vcc U Rb U be U Re Vcc I b Rb U be 1 I bU Re Always calculate in the smallest current Ib !! VRc I c Rc Vc Vcc I c Rc Ve I e Re Vce Vc Ve Bollen 32 BJT, base bias + emitter feedback Load line is the loading of the transistor seen from Uce (>0V7) Vcc, Rc and Re determines the; “open voltage” and the “short circuit current” 33 Bollen BJT, base bias + emitter feedback example Calculate; I b, I c URc, Uc, Ue, Uce Draw output caracteristic Ib = 6,2 uA, Ic = 0,74 mA, URc = 8,9 V, Uc = 7,1 V, Ue =-0,9 V, Uce = 8,0 V Bollen 34 BJT, base bias + emitter feedback example Calculate; I b, I e URe, Ue, Uce Draw output caracteristic Ib = 24 uA, Ie = 2,9 mA, URc = 3,5 V, Ue = -2,5 V, Uce = 2,5 V Bollen 35 BJT, base bias + collector/emitter feedback If Ic > then Uc < then Ib < Bollen If Ic > then Uc < and Ue > then Ib < 36 BJT, base bias + collector feedback Vcc U Rc U Rb U be Vcc 1 I b Rc I b Rb U be Always calculate in the smallest current Ib !! The current through Rc is not Ic but Ic + Ib, so (β+1)Ib !!! If Ic rises for any reason, then Uc falls and also Ib decreases, so then Ic decreases Bollen 37 BJT, base bias collector feedback example Calculate; Ib, ß, Ic Draw output caracteristic Ib = 13 uA, ß = 196, Ic = 2,5 mA Bollen 38 BJT, base bias collector/emitter feedback Vcc U Rc U Rb U be U Re Vcc 1 I b Rc I b Rb U be 1 I b Re Always calculate in the smallest current Ib !! Bollen 39 BJT, base bias collector/emitter feedback ex Calculate; I b, I e URc, Uc, Ue, Uce Draw output caracteristic Ib = 11,8 uA, Ie = 1,1 mA URc = 5,2 V, Uc = 4,8 V Ue = 1,3 V, Uce = 3,5 V Bollen 40 BJT, voltage divider Vb is a stable voltage - 0,7 V = so Ve is a stable voltage Ie is determined by Ve/ Re Ic = Ie . ß/(ß+1) Ic is very stable and nearly independent to ß variation, as long as ß is BIG in value 2 methods of calculating Ic - neglegting Ib, use voltage divider - not neglecting Ib and use thevenin Bollen 41 BJT, voltage divider, neglect Ib R2 Vb Vcc R1 R2 Ve Vb 0V 7 Ve Ie Re So neglegt Ib to R2, or in general Ri >> R2 In practice 10 times bigger Bollen Ic 1 Ie 42 BJT, voltage divider, exact, thevenin Thevenin resistance R1 // R2 62k // 9k1= 7k9 Thevenin voltage Vth R2 Vcc R1 R2 9k1 Vth 16 2V 0 62k 9k1 Bollen 43 BJT, voltage divider, exact, thevenin 7k9 2V0 Vth I b Rth Vbe 1 I b Re 2, 0 I b 7k 9 0, 7 80 1 I b 0, 68k Bollen Ib = 20 uA 44 BJT, voltage divider, example Thevenin resistance = 6k8 Thevenin voltage = 3V1 Ib = 18,8 uA Ic = 2,25 mA re = 11,5 Ω URc = 7V4 Uc = 10V6 Ue = 2V3 Uce = 5V1 Bollen 45 BJT, voltage divider, example Thevenin resistance = 255k Thevenin voltage = 0V0 Ib = 14,3 uA Ic = 1,9 mA re = 14 Ω URc = 17V3 Uc = 0V7 Ue = -3V7 Uce = 4V4 Bollen 46 BJT Bollen 47 BJT Bollen 48