Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Semiconductor Device Modeling and Characterization EE5342, Lecture 26 Spring 2003 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/ L26 17April03 1 n-channel enhancement MOSFET in ohmic region Channel VS = 0 0< VT< VG EOx,x> 0 n+ +e+-e+ -+ e+ -+ +e+- + +e+- + Depl Reg L26 17April03 p-substrate VB < 0 e- channel ele + implant ion 0< VD< VDS,sat n+ Acceptors 2 Fully biased nchannel VT calc p substrate : VG, at threshold VT VT Vs VFB 2p Q'd,max VFB V C'Ox ni p Vt ln 0, Q'd,max qNa xd,max , Na xd,max L26 17April03 2 2 p VB Vs qNa , V 0 3 Values for ms with silicon gate n poly to p - Si : ms NCNa Si Si Vt ln 2 ni NCNa Eg Na Note : Vt ln 2 Vt ln ni ni 2q Eg NC p poly to n - Si : ms Si Si Vt ln q Nd NC Eg Nd Note : Vt ln Vt ln ni Nd 2q L26 17April03 4 L26 17April03 Fig 8.11** |Q’d,max|/q (cm-2) xd,max (microns) Q’d,max and xd,max for biased MOS capacitor 5 I-V relation forn-MOS C' W 2 ID 2VG VT VDS VDS . Note for 2 L ohmic VDS VG VT VDS,sat , ID non-physical result is non - physical. ID,sat At VDS,sat , n's,y L 0 n Ox assume that channel curr. is const for VDS VDS,sat ID,sat nC'Ox W VGS VT 2 2 L L26 17April03 saturated VDS,sat VDS 6 MOSFET equivalent circuit elements Fig 10.51* Cgs 2 1 COx , Cgd COx , COx WLC'Ox 3 3 L26 17April03 7 MOS small-signal equivalent circuit Fig 10.52* L26 17April03 8 MOS channellength modulation Fig 11.5* L26 17April03 9 Analysis of channel length modulation Assume the DR change the channel L length modulation, so I'D ID L L 2Si L 2 p VDS,sat VDS qNa 2 p VDS,sat , VDS VDS VDS,sat ID,sat L26 17April03 n C'Ox W VGS VT 2 1 VDS 2 L 10 Channel length modulated drain char Fig 11.6* L26 17April03 11 Associating the output conductance nC'Ox W VGS VT 2 1 VDS ID,sat L 2 ID ID gd ID,sat VDS V slope GS ID,sat gds,sat gds,sat 1 VDS ID,sat L26 17April03 VDS,sat VDS 12 SPICE mosfet Model Instance CARM*, Ch. 4, p. 290 M MOSFET General Form M<nam e> < drain node> <gate node> < source node> + <bulk /subs trate node> <model nam e> + [L=< value>] [W=< value> ] L = Ch. L. [m] + [AD= <value>] [AS= <value>] W = Ch. W. [m] + [PD= <value>] [PS= <value>] + [NRD=< value>] [NRS=<value>] AD = Drain A [m2] + [NRG=<v alue>] [NRB= <value>] AS = Source A[m2] + [M= <value>] Examples NRD, NRS = D and S diff in squares M1 14 2 13 0 PNOM L=25u W=12u M13 15 3 0 0 PSTRONG M = device multiplier M16 17 3 0 0 PSTRONG M=2 L26 17April03 13 M28 0 2 100 100 NWEAK L=33u W=12u SPICE mosfet model levels • Level 1 is the Schichman-Hodges model • Level 2 is a geometry-based, analytical model • Level 3 is a semi-empirical, shortchannel model • Level 4 is the BSIM1 model • Level 5 is the BSIM2 model, etc. L26 17April03 14 SPICE Parameters Level 1 - 3 (Static) Param. Parameter Description Def. Typ. Units 1 1 V VTO Zero-bias Vthresh KP Transconductance GAMMA Body-effect par. 0.0 0.35 V^1/2 PHI Surface inversion pot. 0.6 0.65 V 0.0 0.02 1/V LAMBDA Channel-length mod. 2.E-05 3.E-05 A/V^2 TOX Thin oxide thickness NSUB Substrate doping 0.0 1.E+15 cm^-3 NSS Surface state density 0.0 1.E+10 cm^-2 LD Lateral diffusion 0.0 8.E-05 m L26 17April03 1.E-07 1.E-07 m 15 SPICE Parameters Level 1 - 3 (Static) Param. Parameter Description Def. Typ. 1 1 600 700 Units TPG Type of gate material* UO Surface mobility IS Bulk jctn. sat. curr. JS Bulk jctn. sat. curr. dens. PB Bulk junction potential 0.8 0.75 V RD Drain ohmic resistance 0 10 Ohms RS Source ohmic resistance 0 10 Ohms RSH S/D sheet ohmic res. 0 10 Ohms/sq 1.E-14 1.E-15 cm^2/V-s A A/m^2 * 0 = aluminum gate, 1 = silicon gate opposite substrate type, 2 = silicon gate same as substrate. L26 17April03 16 SPICE Parameters Level 1 - 3 (Q & N) Param. Parameter Description Def. Typ. Units 0 1.E-09 Fd/m^2 CJ Zero-bias bulk cap./A MJ Bulk jctn. grading coeff. 0.5 0.5 CJSW Zero-bias perimeter C/l 0 1.E-09 MJSW Per. C grading coeff. 0.5 0.5 FC For.-bias cap. coeff. 0.5 0.5 CGBO Gate-bulk overlap C/L 0 2.E-10 Fd/m CGDO Gate-drain overlap C/L 0 4.E-11 Fd/m CGSO G-S overlap C/L 0 4.E-11 Fd/m AF Flicker-noise exp. 1 1.2 KF Flicker-noise coeff. 0.0 1.E-26 L26 17April03 Fd/m 17 Level 1 Static Const. For Device Equations Vfb = -TPG*EG/2 -Vt*ln(NSUB/ni) - q*NSS*TOX/eOx VTO = as given, or = Vfb + PHI + GAMMA*sqrt(PHI) KP = as given, or = UO*eOx/TOX CAPS are spice pars., technological constants are lower case L26 17April03 18 Level 1 Static Const. For Device Equations b = KP*[W/(L-2*LD)] = 2*K, K not spice GAMMA = as given, or = TOX*sqrt(2*eSi*q*NSUB)/eOx 2*phiP = PHI = as given, or = 2*Vt*ln(NSUB/ni) ISD = as given, or = JS*AD ISS = as given, or = JS*AS L26 17April03 19 Level 1 Static Device Equations vgs < VTH, ids = 0 VTH < vds + VTH < vgs, id = KP/2*[W/(L-2*LD)]*[vgs-VTH-vds/2] *vds*(1 + LAMBDA*vds) VTH < vgs < vds + VTH, id = KP*[W/(L-2*LD)]*(vgs - VTH)^2 *(1 + LAMBDA*vds) L26 17April03 20 References • CARM = Circuit Analysis Reference Manual, MicroSim Corporation, Irvine, CA, 1995. • M&A = Semiconductor Device Modeling with SPICE, 2nd ed., by Paolo Antognetti and Giuseppe Massobrio, McGraw-Hill, New York, 1993. • M&K = Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986. • Semiconductor Physics and Devices, by Donald A. Neamen, Irwin, Chicago, 1997 L26 17April03 21