Download EE 5342 Lecture

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Semiconductor Device
Modeling and Characterization
EE5342, Lecture 26
Spring 2003
Professor Ronald L. Carter
[email protected]
http://www.uta.edu/ronc/
L26 17April03
1
n-channel enhancement
MOSFET in ohmic region
Channel
VS = 0
0< VT< VG
EOx,x> 0
n+ +e+-e+ -+ e+ -+ +e+- + +e+- +
Depl Reg
L26 17April03
p-substrate
VB < 0
e- channel ele
+ implant ion
0< VD< VDS,sat
n+
Acceptors
2
Fully biased nchannel VT calc
p  substrate : VG, at threshold  VT
VT  Vs  VFB  2p 
Q'd,max
 VFB  V
C'Ox
 ni 
p  Vt ln   0, Q'd,max  qNa xd,max ,
 Na 
xd,max 
L26 17April03


2 2 p  VB  Vs 
qNa
, V  0
3
Values for ms
with silicon gate
n

poly to p - Si : ms

 NCNa  
 Si   Si  Vt ln 2  
 ni  

 NCNa  Eg
 Na 
Note : Vt ln 2    Vt ln 
 ni 
 ni  2q
Eg 
 NC  

p poly to n - Si : ms  Si    Si  Vt ln  
q 
 Nd  
 NC  Eg
 Nd 
Note : Vt ln    Vt ln 
 ni 
 Nd  2q
L26 17April03
4
L26 17April03
Fig 8.11**
|Q’d,max|/q (cm-2)
xd,max (microns)
Q’d,max and xd,max for
biased MOS capacitor
5
I-V relation
forn-MOS
C'


W
2
ID 
2VG  VT VDS  VDS
. Note for
2
L
ohmic
VDS  VG  VT  VDS,sat ,
ID
non-physical
result is non - physical.
ID,sat
At VDS,sat , n's,y L  0
n Ox
assume that channel curr.
is const for VDS  VDS,sat
ID,sat
nC'Ox W
VGS  VT 2

2
L
L26 17April03
saturated
VDS,sat
VDS
6
MOSFET equivalent
circuit elements
Fig 10.51*
Cgs
2
1
 COx , Cgd  COx , COx  WLC'Ox
3
3
L26 17April03
7
MOS small-signal
equivalent circuit
Fig 10.52*
L26 17April03
8
MOS channellength modulation
Fig 11.5*
L26 17April03
9
Analysis of channel
length modulation
Assume the DR change  the channel
L
length modulation, so I'D 
ID
L  L
2Si
L 
2 p  VDS,sat  VDS
qNa


 2 p  VDS,sat , VDS  VDS  VDS,sat
 ID,sat
L26 17April03
n C'Ox W
VGS  VT 2 1  VDS 

2 L
10
Channel length modulated drain char
Fig 11.6*
L26 17April03
11
Associating the
output conductance
nC'Ox W
VGS  VT 2 1  VDS 
ID,sat 
L
2
ID
ID
gd 
ID,sat
VDS V
slope 
GS
ID,sat
gds,sat

gds,sat 
1  VDS 
 ID,sat
L26 17April03
VDS,sat
VDS
12
SPICE mosfet Model
Instance
CARM*, Ch. 4, p. 290
M
MOSFET
General Form
M<nam e> < drain node> <gate node> < source node>
+ <bulk /subs trate node> <model nam e>
+ [L=< value>] [W=< value> ]
L = Ch. L. [m]
+ [AD= <value>] [AS= <value>]
W = Ch. W. [m]
+ [PD= <value>] [PS= <value>]
+ [NRD=< value>] [NRS=<value>] AD = Drain A [m2]
+ [NRG=<v alue>] [NRB= <value>] AS = Source A[m2]
+ [M= <value>]
Examples
NRD, NRS = D and
S diff in squares
M1 14 2 13 0 PNOM
L=25u W=12u
M13 15 3 0 0 PSTRONG
M = device multiplier
M16 17 3 0 0 PSTRONG M=2
L26 17April03
13
M28 0 2 100 100 NWEAK L=33u W=12u
SPICE mosfet
model levels
• Level 1 is the Schichman-Hodges
model
• Level 2 is a geometry-based,
analytical model
• Level 3 is a semi-empirical, shortchannel model
• Level 4 is the BSIM1 model
• Level 5 is the BSIM2 model, etc.
L26 17April03
14
SPICE Parameters
Level 1 - 3 (Static)
Param. Parameter Description
Def.
Typ.
Units
1
1
V
VTO
Zero-bias Vthresh
KP
Transconductance
GAMMA
Body-effect par.
0.0
0.35
V^1/2
PHI
Surface inversion pot.
0.6
0.65
V
0.0
0.02
1/V
LAMBDA Channel-length mod.
2.E-05 3.E-05
A/V^2
TOX
Thin oxide thickness
NSUB
Substrate doping
0.0
1.E+15
cm^-3
NSS
Surface state density
0.0
1.E+10
cm^-2
LD
Lateral diffusion
0.0
8.E-05
m
L26 17April03
1.E-07 1.E-07
m
15
SPICE Parameters
Level 1 - 3 (Static)
Param. Parameter Description
Def.
Typ.
1
1
600
700
Units
TPG
Type of gate material*
UO
Surface mobility
IS
Bulk jctn. sat. curr.
JS
Bulk jctn. sat. curr. dens.
PB
Bulk junction potential
0.8
0.75
V
RD
Drain ohmic resistance
0
10
Ohms
RS
Source ohmic resistance
0
10
Ohms
RSH
S/D sheet ohmic res.
0
10
Ohms/sq
1.E-14 1.E-15
cm^2/V-s
A
A/m^2
* 0 = aluminum gate, 1 = silicon gate opposite substrate type,
2 = silicon gate same as substrate.
L26 17April03
16
SPICE Parameters
Level 1 - 3 (Q & N)
Param. Parameter Description
Def.
Typ.
Units
0
1.E-09
Fd/m^2
CJ
Zero-bias bulk cap./A
MJ
Bulk jctn. grading coeff.
0.5
0.5
CJSW
Zero-bias perimeter C/l
0
1.E-09
MJSW
Per. C grading coeff.
0.5
0.5
FC
For.-bias cap. coeff.
0.5
0.5
CGBO
Gate-bulk overlap C/L
0
2.E-10
Fd/m
CGDO
Gate-drain overlap C/L
0
4.E-11
Fd/m
CGSO
G-S overlap C/L
0
4.E-11
Fd/m
AF
Flicker-noise exp.
1
1.2
KF
Flicker-noise coeff.
0.0
1.E-26
L26 17April03
Fd/m
17
Level 1 Static Const.
For Device Equations
Vfb = -TPG*EG/2 -Vt*ln(NSUB/ni)
- q*NSS*TOX/eOx
VTO = as given, or
= Vfb + PHI + GAMMA*sqrt(PHI)
KP = as given, or
= UO*eOx/TOX
CAPS are spice pars., technological
constants are lower case
L26 17April03
18
Level 1 Static Const.
For Device Equations
b = KP*[W/(L-2*LD)] = 2*K, K not spice
GAMMA = as given, or
= TOX*sqrt(2*eSi*q*NSUB)/eOx
2*phiP = PHI = as given, or
= 2*Vt*ln(NSUB/ni)
ISD = as given, or = JS*AD
ISS = as given, or = JS*AS
L26 17April03
19
Level 1 Static
Device Equations
vgs < VTH, ids = 0
VTH < vds + VTH < vgs,
id = KP/2*[W/(L-2*LD)]*[vgs-VTH-vds/2]
*vds*(1 + LAMBDA*vds)
VTH < vgs < vds + VTH,
id = KP*[W/(L-2*LD)]*(vgs - VTH)^2
*(1 + LAMBDA*vds)
L26 17April03
20
References
• CARM = Circuit Analysis Reference Manual,
MicroSim Corporation, Irvine, CA, 1995.
• M&A = Semiconductor Device Modeling with
SPICE, 2nd ed., by Paolo Antognetti and Giuseppe
Massobrio, McGraw-Hill, New York, 1993.
• M&K = Device Electronics for Integrated Circuits,
2nd ed., by Richard S. Muller and Theodore I.
Kamins, John Wiley and Sons, New York, 1986.
• Semiconductor Physics and Devices, by Donald A.
Neamen, Irwin, Chicago, 1997
L26 17April03
21
Related documents