Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Intrinsic semiconductor Si Si Si + Si Si Si Si EC Si + Si Si Si Si Si Si Si Si FEKT VUT v Brně ESO / L1 / J.Boušek E V 1 Doped semiconductor N-type FEKT VUT v Brně ESO / L1 / J.Boušek 2 Si Si Doped semiconductor P-type Si Si Si Si Si Si Si EC Si 1,12 eV Si B Si Si B 1,12 eV Si Si Si eV 0,045 + Si Si Si Si Si FEKT VUT v Brně - 0,045 eV + Si Si EC + + Si Si Si Si Si EA EV EA EV Si Si ESO / L1 / J.Boušek 3 Electric current in semiconductors Drift of charged carriers E vd + - + vd - ESO / L2 / J.Boušek 4 Electric current in semiconductors Jp,drift = qμppE Jn,drift = qμnnE E A I + + vd = μ pE Ip,drift = qpvd A Jp,drift = qpvd ESO / L2 / J.Boušek 5 Carrier mobility : Dimension : m2V-1s-1. cm2V-1s-1. - n > p Si , T=300K : n = 1300 cm2V-1s-1 pro ND = 1014 cm-3 N- typ p = 490 cm2V-1s-1 pro NA = 1014 cm-3. ESO / L2 / J.Boušek 6 Dependence on dopant concentration pohyblivost [cm2 / Vs] 1000 elektrony 100 díry 10 10 14 10 15 10 16 10 17 1018 1019 N D nebo NA [cm-3 ] ESO / L2 / J.Boušek 7 Diffusion J p,dif difúze J n,dif + - difúze + + + + + + + + + x ESO / L2 / J.Boušek - - - - x 8 Diffusion 1. Fick-Law: c c c J D , , D.gradc x y z J n,dif dn qDn dx J n, dif ESO / L2 / J.Boušek dn qDn dx 9 Diffusion + Drift dn dp Jx = qEx(pp + nn) + q(Dn - Dp ) dx dx Einstein equation D/ = kT/q Dp kT Dn = = q p n ESO / L2 / J.Boušek = UT 10 Generation and recombination Generation = need energy = generation in pairs: (electron + hole) - photo-generation - thermal excitation of the crystal lattice - high energy electron Recombination = loss of energy = recombination in pairs: (el. + hole) : - large number of complicated processes - direct (interband) - undirect (recombination centres, traps) - surface generation lifetime electrones… n recombination holes…. p ESO / L2 / J.Boušek 11 Lifetime of the carriers Doped semiconductor: Type N n >> p ; Type P p >> n Usually : n , p ≈ 1 s High quality silicon : n , p ≥ 1 ms High density of traps / of recombination centres : n , p ≈ 1 s ÷1 ns - High speed devices: Intentionally ... Au (Al) - Low quality production: Crystal distortions, Impurities ESO / L2 / J.Boušek 12 Thermal equilibrium p0 n0 = ni2 equilibrium state (index "0") Distortion of thermal equilibrium: n = n0 + n ; p = p0 + p (n a p concentration of non-equilibrium carriers) Injection : np > ni2 low (n << n0) - medium (n n0) - high (n >> n0) Extraction : np < ni2. ESO / L2 / J.Boušek 13 PN-Junction in equilibrium state Depletion region ESO / L2 / J.Boušek 14 PN-Junction in equilibrium state Concentration of dopants: ND = 1019 m-3 NA = 1020 m-3 Electrons in N: nn = ND = 1019 m-3 Electrons in P: np = ni2 / NA = 1032 m-6 / 1020 m-3 = 1012 m-3 Difference in concentration 107 electron diffusion to P !!!!! In N only ionized donors (ND +) standing firmly in the lattice Holes in P: pp = NA = 1020 m-3 Holes in N: pp = ni2 / ND = 1032 m-6 / 1019 m-3 = 1013 m-3 Difference in concentration 107 diffusion of holes to N !!!!! In N only ionized donors (ND +) standing firmly in the lattice Ionized dopants create space charge !!!!!!!!! ESO / L2 / J.Boušek 15 Space charge in depletion area Electrical field Potential ESO / L2 / J.Boušek 16 PN-Junction in equilibrium state Density of the space charge given by dopants concentration Junction area with lower dopants concentration ís wider Consequence : Electrical field in depletion area Emax- in metalurgical junction !!!! Potential difference between P and N : Diffusion voltage. Actual potential value given by the shape of electrical field ESO / L2 / J.Boušek 17 Band-diagram of PN-Junction ESO / L2 / J.Boušek 18 Band-diagram of PN-Junction 1) The position of EF in both areas P and N must correspond to the type of semiconductor / type of conductivity. (shift EF to EV in case of “P-type“ or to EC in case of “N-type“) 2) In Thermal equilibrium the value of Fermi level EF is constant. To fulfuill both 1) + 2) : a) mutual shift of Conductive and Valence bands (band-bending) b) The shift corresponds to qUD . qUD : energetic treshold - prevents diffusion of majority carriers. ESO / L2 / J.Boušek 19 PN junction in FORWARD polarisation Diffusion voltage - barrier against diffusion of majority carriers Equilibrium state : Only small diffusion current which is compensated with the drift casused by potential difference in space charge area. majority carriers - diffusion minoritní carriers - drift In forward polarisation : external voltage acts against the potential in depletion area - the barrier / treshold is lower !!! Forward current is made by DIFFUSSION of majority carriers !! ESO / L2 / J.Boušek 20 PN junction in REVERSE polarisation Polarity of external voltage is the same as the polarity of electrical field in the space charge region: !! Electrical field in the space charge region grows !! Electrical field in space charge region enhance the drift of minority carriers from quasineutral parts of the junction: -The concentration of minority carriers in quasineutral parts of the junction drops. - When increasing the reverse voltage the reverse current does not increase !!!! Reverse current : DRIFT current of minority carriers !!!! ESO / L2 / J.Boušek 21