Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Intrinsic semiconductor
Si
Si
Si
+
Si
Si
Si
Si
EC
Si
+
Si
Si
Si
Si
Si
Si
Si
Si
FEKT VUT v Brně
ESO / L1 / J.Boušek
E
V
1
Doped semiconductor N-type
FEKT VUT v Brně
ESO / L1 / J.Boušek
2
Si
Si
Doped semiconductor P-type
Si
Si
Si
Si
Si
Si
Si
EC
Si
1,12
eV
Si
B
Si
Si B
1,12
eV
Si Si
Si eV
0,045
+
Si
Si
Si
Si
Si
FEKT VUT v Brně
-
0,045 eV
+
Si
Si
EC
+
+
Si
Si
Si
Si
Si
EA
EV
EA
EV
Si
Si
ESO / L1 / J.Boušek
3
Electric current in semiconductors
Drift of charged carriers
E
vd
+
-
+
vd
-
ESO / L2 / J.Boušek
4
Electric current in semiconductors
Jp,drift = qμppE
Jn,drift = qμnnE
E
A
I
+
+
vd = μ pE
Ip,drift = qpvd A
Jp,drift = qpvd
ESO / L2 / J.Boušek
5
Carrier mobility : 
Dimension : m2V-1s-1. cm2V-1s-1.
- n > p
Si , T=300K :
n = 1300 cm2V-1s-1 pro ND = 1014 cm-3 N- typ p = 490 cm2V-1s-1 pro NA = 1014 cm-3.
ESO / L2 / J.Boušek
6
Dependence on dopant concentration
pohyblivost [cm2 / Vs]
1000
elektrony
100
díry
10
10 14
10 15
10 16
10 17
1018
1019
N D nebo NA [cm-3 ]
ESO / L2 / J.Boušek
7
Diffusion
J p,dif
difúze
J n,dif
+
-
difúze
+ +
+ + +
+ + + +
x
ESO / L2 / J.Boušek
-
-
-
-
x
8
Diffusion
1. Fick-Law:
 c c c 
J   D , ,    D.gradc
 x y z 
J n,dif
dn
 qDn
dx
J n, dif
ESO / L2 / J.Boušek
dn
 qDn
dx
9
Diffusion + Drift
dn
dp
Jx = qEx(pp + nn) + q(Dn
- Dp )
dx
dx
Einstein equation
D/ = kT/q
Dp
kT
Dn
=
=
q
p
n
ESO / L2 / J.Boušek
= UT
10
Generation and recombination
Generation = need energy = generation in pairs: (electron + hole)
- photo-generation
- thermal excitation of the crystal lattice
- high energy electron
Recombination = loss of energy = recombination in pairs: (el. + hole) :
- large number of complicated processes
- direct (interband)
- undirect (recombination centres, traps)
- surface
generation
lifetime
electrones… n
recombination
holes…. p
ESO / L2 / J.Boušek
11
Lifetime of the carriers
Doped semiconductor:
Type N n >> p
;
Type P p >> n
Usually : n , p ≈ 1 s
High quality silicon : n , p ≥ 1 ms
High density of traps / of recombination centres :
n , p ≈ 1 s ÷1 ns
- High speed devices: Intentionally ... Au (Al)
- Low quality production: Crystal distortions, Impurities
ESO / L2 / J.Boušek
12
Thermal equilibrium
p0 n0 = ni2
equilibrium state (index "0")
Distortion of thermal equilibrium: n = n0 + n ;
p = p0 + p
(n a p concentration of non-equilibrium carriers)
Injection : np > ni2
low (n << n0) - medium (n  n0) -
high (n >> n0)
Extraction : np < ni2.
ESO / L2 / J.Boušek
13
PN-Junction in equilibrium state
Depletion region
ESO / L2 / J.Boušek
14
PN-Junction in equilibrium state
Concentration of dopants:
ND = 1019 m-3
NA = 1020 m-3
Electrons in N: nn = ND = 1019 m-3
Electrons in P: np = ni2 / NA = 1032 m-6 / 1020 m-3 = 1012 m-3
Difference in concentration 107
electron diffusion to P !!!!!
In N only ionized donors (ND +) standing firmly in the lattice
Holes in P: pp = NA = 1020 m-3
Holes in N: pp = ni2 / ND = 1032 m-6 / 1019 m-3 = 1013 m-3
Difference in concentration 107
diffusion of holes to N !!!!!
In N only ionized donors (ND +) standing firmly in the lattice
Ionized dopants create space charge !!!!!!!!!
ESO / L2 / J.Boušek
15
Space charge in depletion area
Electrical field
Potential
ESO / L2 / J.Boušek
16
PN-Junction in equilibrium state
Density of the space charge given by dopants concentration
Junction area with lower dopants concentration ís wider
Consequence : Electrical field in depletion area
Emax- in metalurgical junction !!!!
Potential difference between P and N : Diffusion voltage.
Actual potential value given by the shape of electrical field
ESO / L2 / J.Boušek
17
Band-diagram of PN-Junction
ESO / L2 / J.Boušek
18
Band-diagram of PN-Junction
1) The position of EF in both areas P and N must correspond to
the type of semiconductor / type of conductivity.
(shift EF to EV in case of “P-type“ or to EC in case of “N-type“)
2) In Thermal equilibrium the value of Fermi level EF is constant.
To fulfuill both 1) + 2) :
a) mutual shift of Conductive and Valence bands (band-bending)
b) The shift corresponds to qUD .
qUD : energetic treshold - prevents diffusion of majority carriers.
ESO / L2 / J.Boušek
19
PN junction in FORWARD polarisation
Diffusion voltage - barrier against diffusion of majority carriers
Equilibrium state :
Only small diffusion current which is compensated with the drift
casused by potential difference in space charge area.
majority carriers - diffusion
minoritní carriers - drift
In forward polarisation : external voltage acts against the
potential in depletion area - the barrier / treshold is lower !!!
Forward current is made by DIFFUSSION of majority carriers !!
ESO / L2 / J.Boušek
20
PN junction in REVERSE polarisation
Polarity of external voltage is the same as the polarity of electrical
field in the space charge region:
!! Electrical field in the space charge region grows !!
Electrical field in space charge region enhance the drift of minority
carriers from quasineutral parts of the junction:
-The concentration of minority carriers in quasineutral parts of the
junction drops.
- When increasing the reverse voltage the reverse current does not
increase !!!!
Reverse current : DRIFT current of minority carriers !!!!
ESO / L2 / J.Boušek
21
Related documents