Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Graphics Hardware Trends performance • Faster development than Moore’s law – Double transistor functions every 6-12 months – Driven by game industry • Improvement of performance and functionality – Multi-textures – Pixel operations (transparency, blending, pixel shaders) – Geometry and lighting modifications (vertex shaders) graphics CPU network time Interactive Visualization of Volumetric Data on Consumer PC Hardware: Introduction Daniel Weiskopf Transistor Functions transistors (millions) NVIDIA GeForce FX 5800 (125M) 120 110 100 ATI Radeon 9700 Pro (110M) 90 80 70 NVIDIA GeForce4 (63M) 60 50 40 NVIDIA GeForce3 (57M) ATI Radeon 8500 (60M) 30 20 Riva 128 (3M) 10 0 9/97 3/98 9/98 3/99 9/99 3/00 9/00 3/01 9/01 3/02 9/02 3/03 time (month/year) Interactive Visualization of Volumetric Data on Consumer PC Hardware: Introduction Daniel Weiskopf Typical GPU Characteristics Brand ATI Radeon 9800 P NVIDIA GeForceFX 5900 U Transistors 107 M 130 M Technology Clock rate Mem bandwidth Fill rate (peak) Pixel pipelines Textures per unit FSAA Bits per channel Tri transform (peak) Tris (3Dmark) Vertex shaders 0.15 micron 380 MHz 22 GB/s 3 GPixel/s 8 8 6 x 18 Gsample/s 10 380 M 19 M 4 0.13 micron 450 MHz 27 GB/s 1.8/3.6 GPixel/s 4/8 16 4 x 27 Gsample/s 10 315 M 28 M 4+ Source: www.tomshardware.com Interactive Visualization of Volumetric Data on Consumer PC Hardware: Introduction Daniel Weiskopf Modern Scientific Visualization • Traditional plotting techniques are not appropriate for visualizing the huge datasets resulting from • computer simulations (CFD, physics, chemistry, ...) • sensor measurements (medical, seismic, satellite, …) „The purpose of computing is insight not numbers“ • Map abstract data onto graphical representations • Try to use colorful 3D raster graphics in • expressive still images • recorded animations • interactive visualizations „To see the unseen“ Interactive Visualization of Volumetric Data on Consumer PC Hardware: Introduction Daniel Weiskopf Visualization Pipeline and Classification visualization pipeline sensors simulation raw data • lines • surfaces • voxels attributes: data bases volume rend. 3D isosurfaces 2D filter geometry: classification height fields color coding stream ribbons topology arrows LIC glyphs icons attribute symbols 1D vis data scalar map renderable representations vector tensor/MV different grid types different algorithms • color • texture • transparency render visualizations images videos interaction 3D scalar fields Cartesian (eg. medical datasets) 3D vector fields un/structured (eg. CFD) Interactive Visualization of Volumetric Data on Consumer PC Hardware: Introduction trees, graphs, tables, data bases InfoVis Daniel Weiskopf GPU and Visualization Pipeline • Renderer – Texture-based techniques (e.g., for volume rendering) – Large textured terrain height fields • Mapper – – – – Classification in volume rendering Integrate ray segments (in unstructured volumes) Integrate particle traces (in flow fields) Assign color and transparency for NPR • Filtering – Data filtering in graphics memory – Compression/decompression (of textures) Interactive Visualization of Volumetric Data on Consumer PC Hardware: Introduction Daniel Weiskopf Visualization of Volumetric Data • Direct volume rendering of scalar fields • Flow visualization in 3D • Focus on regular grids Interactive Visualization of Volumetric Data on Consumer PC Hardware: Introduction Daniel Weiskopf Visualization of Volumetric Data Interactive Visualization of Volumetric Data on Consumer PC Hardware: Introduction Daniel Weiskopf