Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Multichannel integrated circuits for digital X-ray imaging with energy windowing Krzysztof Świentek Department of Nuclear Electronics FPNT, AGH Kraków [email protected] 2004 Content • Introduction – multichannel ASICs • Noise in MOS transistors • Crosstalk in mixed–mode integrated circuits • Random matching • RX64DTH – digital imaging using silicon detectors • Measurements results – chip tutorial • Summary 2004 Introduction multichannel ASIC SET OF SENSORS ( silicon strip detector) Input signals - small amplitude (Qin = 1400 el) - stochastic character (amplitude, time) MULTICHANNEL INTEGRATED CIRCUITS (analogue & digital blocks) 6.5 mm LIMITS: power & area LOW LEVEL OF NOISE RX64DTH UNIFORMITY OF PARAMETERS CROSSTALK digital analogue 2004 Noise in MOS transistors 1. Thermal noise of channel saturation linear dith2 8 kTgm df 3 dith2 4kTgds df Simulations (HSPICE) NLEV=3 dith2 8kT W 1 a a2 Cox VGS VT GDSNIO df 3 L 1 a BSIM3v3 (NIMOD=2) dith2 4kTeff Qinv df L2eff Measurments – short channel effects (2-10x): ( velocity saturation, hot electrons) 2. Flicker noise Simulations (HSPICE) NLEV=2, 3 di12/ f KF g m2 1 df Cox Weff Leff f AF BSIM3v3 (NIMOD=2) Measurments – short channel effects ( hot electrons, RST noise) 2004 CROSSTALK DIGITAL BLOCKS GENERATION ANALOG BLOCKS SILICON SUBSTRATE TRANSFER EFFECT Transfer: – common supply lines: parasitic inductance and resistance (Vind=LdI/dt) – common substrate: (substrateepi, VT=f(VSB), gmb) Effects for analogue blocks: switching noise, oscillation etc. Minimisation: – reducing the noise generation, – increasing the immunity of analogue part, – isolation techniques. 2004 MATCHING - identically design devices have different parameters P=P1-P2 (P/P) L L AP2 P SP2 D 2 WL 2 W W Number of cases RANDOM MATCHING P/P [%] D For MOS transistors: VT0 , , VT0 MS 2 F 4q s F N B Qox Cox Cox CMOS 0.7m - (VT0) NMOS PMOS W/L=2m/0.7m 9.72 mV 19.43 mV W/L=1500m/1.5m 0.31 mV 0.63 mV Cox W L 2q s N B Cox 2004 1. Matching bias condition differences: VT, , R a) a) Vosr b) VDD R1 V V R VT GS T R 2 R2 OUT1 IREF OUT2 IN1 IN2 M1 M2 b) I DS 2 VT I DS VGS VT VDD IBIAS M0 IDS1 IDS2 M1 M2 2. Reduce sensitivity - proper configuration (Kv Ci/Cj) 3. Monte-Carlo analysis using HSPICE 4. Symmetry in layout (matching data for given technology) – common centroid geometry, unit cells, – bias, temperature, orientation, – surrounding, metal coverage 2004 X-ray imaging using silicon strip detectors Key system issues: – fully parallel signal processing for all channels. – only binary information (yes/no) is extracted from each strip. – data from each channel must be stored in the local buffer for the whole measurement period. Signal 10x smaller Stochastic X-rays current pulses High Energy Physics 100 m data, control Silicon strip detector PC computer Integrated circuit 2004 RX64DTH - fully integrated 64-channel chip (CMOS 0.8 m process) RX64DTH consists of: – 64 front-end channels (preamplifier, shaper, two discriminators) – 128 pseudo-random counters (20-bit) – internal DACs: two 8-bit threshold setting and and three 5-bit for bias – internal calibration circuit (square wave 1mV-30 mV) – control logic – I/O circuit (interface to external bus) 37006500 m2 2004 Single analogue channel V VT-HIGH 0 V V VT-LOW C3 t t t Tp C2 Shaper 1 C5 0 Preamplifier Discriminators Key design issues: – low noise (ENC 200 el. rms, sensor ) – low power (3-5 mW/channel) – relatively fast shaping (Tp = 0.5 1s) – uniformity from channel to channel (gain, offset, noise) – immunity to switching noise 2004 Preamplifier & shaper V V t t SENSOR: Cdet Idet Rbias Tp LIMITATIONS Minimum of noise (transistor dimensions, bias) 1. POWER dvn2 b a df f Fv Cin2 ENC a bFvf Cin2 cFiTp Tp din2 c df 3. SENSOR 4. PSRR, stability, matching. Hand calculation K 1 1 dvn2 8 1 kT 2f df 3 gm1 Cox W1L1 f 2 n di 4kT 4kT 2qI DET df Rbias R fed M1: 500/1 2. PEAKING TIME M5: 2/120 Simulation HSPICE Measurements (bias, temp., Tp) DAC currents Other transistors M4: 100/10 – IFED – IFEDSH – ICAS Id = 500 A 2004 ENC versus Peaking Time V t Noise types Tp ENC – total noise ENCW – white voltage noise ENCf – 1/f voltage noise ENCi – white current noise TP [s] Peaking time TP • Optimal the lowest noise • Fast Front-end increasing noise 2004 Discriminator – offsets, crosstalk 1 V 0 VT-HIGH VT-LOW t Tp 1 • AC coupling • differential stage (CMRR) • hysteresis 0 • power supply lines, guard rings 2004 Pseudo-random counters – 20 bit counters (large dynamic range of the image) – small layout area (only 8 transistor per bit) – 128 counters are grouped in the 8 blocks of 16 counters each (8 bit I/O bus to minimize the dead time) 2004 Functionality & testability Calibration circuits: Qinj=CtVcal (500 el - 13000 el) Internal DACs: threshold setting, gain, peaking time Command code Action 000 SetGateStatus 001 ReadoutDestructive 010 ReadoutNonDestructive 011 CalibrationPulseLong 100 CalibrationPulseShort 101 CounterPulse 110 LoadDac 111 Unused code I/O circuits: 2 x threshold 8-bit 3 x bias 5-bit 1 x calibration 4-bit 6 dacs • LVDS standard (command, clock) • 8-bit data bus (tristate), • 3-bit address (up to 8 chips) 2004 LAYOUT - floor plan, bias lines, pads Floor plan 2 – preamplifier & shaper – discriminators 3 – counters & IOs 4 – digital outputs 12 – control logic 5 – calibration 6 – bias DACs 7 Isolation techniques 8 – reduce inductance (separate bias line,pads), 9 10 11 14 – floor plan, bias lines – keep “clean” substrate – LVDS 13 – RC filters – guard rings, shielding Digital guard ring Analog guard ring Digital ground Middle ring Analog ground 2004 Window – threshold DAC’s 0,5 800 0,4 0,3 600 0,2 500 0,1 400 0,0 300 -0,1 Error [LSB] Voltage [mV] 700 -0,2 200 -0,3 100 -0,4 0 -0,5 0 50 100 150 200 250 Dacvalue value [LSB] Dac [LSB] – two independent DACs – common centroid matrix – mixed matrices – matching problem – need software correction 20 6 5 4 10 3 2 5 1 0 3,67eV/el Difference between DAC HIGH and LOW 7 LSB 0 0 Silicon: Difference [LSB] [LSB] Difference [mV] Difference Difference [mV] 15 50 100 150 200 250 Dac value [LSB] Dac value [LSB] 2004 Noise IFED [LSB] IFED SH [LSB] ICAS [LSB] 32 32 32 32 32 32 Temp. versus ICAS & Temp Gain [V/el] () Offset [mV] () ENC [el. rms] 8 keV ENC [el. rms] 20 keV ENC [el. rms] Cal 10 room 57.63 (0.34) -9.23 (1.91) 248 (6.1) 232 (7.7) 232 (24) 32 room 56.79 (0.34) -11.84 (1.91) 251 (6.1) 234 (8.5) 32 40 room 32 32 48 room 32 32 56 room VTH = 255 VTL = scan VTH = scan VTL = 255 219 (24) 56.30 (0.37) -11.50 (1.96) 233 (7.5) 217 (7.3) 213 (15) Source Pu238 + Cu 203 (13) 32 32 56 25° Vdet = 130 V 191 32 32 63 25° Vdd = 4.0 V 185 32 32 63 20° Vddd = 4.0 V 175 32 32 63 18° Peltier element for temp. 163 Controled Temp. 2004 Noise versus IFED IFED [LSB] IFEDSH [LSB] ICAS [LSB] Temp. Gain [V/el] () Offset [mV] () ENC [el. rms] 8 keV ENC [el. rms] 20 keV 24 32 63 20° 54.86 (0.39) -17.62 (1.33) 198.9 (5.1) 205.9 (16.7) 32 32 63 20° 54.85 (0.44) -17.85 (1.09) 203.1 (6.6) 201.5 (8.22) 40 32 63 20° 54.86 (0.45) -17.55 (1.26) 220.7 (8.5) 213.7 (9.47) 48 32 63 20° 54.84 (0.49) -16.96 (1.30) 238.2 (9.2) 228.6 (9.46) – gain & offset const – window is 5 LSB – Peltier element } fast noise increasing pin-holes in detector leakeage current dead channels because out of operating point increase IFED but ... rescue 2004 Simulation: TP & Gain as a function of IFEDSH Impulse height shaper output TP • TP = 0.7 – 1 s • Impulse fall ends 4 s 200 kHz 2004 Gain, Offset & Noise versus IFEDSH – window is 5 LSB IFED [LSB] IFEDSH [LSB] ICAS [LSB] Temp. Gain [V/el] () Offset [mV] () ENC [el. rms] 20 keV 32 16 63 20° 80.54 (0.57) -0.8 (0.9) 177.5 (4.91) 32 24 63 20° 63.74 (0.52) -11.68 (1.11) 197.6 (8.69) 54.85 (0.44) -17.85 (1.09) 201.5 (8.22) 32 32 63 20° 32 40 63 20° 50.2 (0.36) -20.59 (1.24) 206.5 (9.42) 32 48 63 20° 47.64 (0.35) -21.67 (1.39) 209.9 (8.92) 32 63 63 20° 45.52 (0.32) -22.82 (1.22) 210.7 (9.36) – Peltier element max (slow) peaking time TP min (fast) 2004 Summary 1. Multichannel mix-mode ASIC : — critical parameters connected together — looking for a golden solution 2. Software corrections : — DACs problem — differences between the chips 3. Noise controling : IFED – better detector lower noise ICAS – the highier the beter (cooling ?) IFEDSH – high gain gives low noise and speed 4. To do – measurements — speed — uniformity in 6-chip module 2004