Download Swientek-Torino2004

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Multichannel integrated circuits
for digital X-ray imaging
with energy windowing
Krzysztof Świentek
Department of Nuclear Electronics
FPNT, AGH Kraków
[email protected]
2004
Content
• Introduction – multichannel ASICs
• Noise in MOS transistors
• Crosstalk in mixed–mode integrated circuits
• Random matching
• RX64DTH – digital imaging using silicon detectors
• Measurements results – chip tutorial
• Summary
2004
Introduction  multichannel ASIC
SET OF SENSORS ( silicon strip detector)
Input signals - small amplitude (Qin = 1400 el)
- stochastic character (amplitude, time)
MULTICHANNEL INTEGRATED CIRCUITS (analogue & digital blocks)
6.5 mm
LIMITS:
power & area
LOW LEVEL
OF NOISE
RX64DTH
UNIFORMITY OF
PARAMETERS
CROSSTALK
digital  analogue
2004
Noise in MOS transistors
1. Thermal noise of channel
saturation
linear
dith2 8
 kTgm
df
3
dith2
 4kTgds
df
Simulations (HSPICE)
NLEV=3
dith2 8kT
W
1  a  a2

 Cox VGS  VT 
GDSNIO
df
3
L
1 a
BSIM3v3 (NIMOD=2)
dith2 4kTeff

Qinv
df
L2eff
Measurments – short channel effects (2-10x):
( velocity saturation, hot electrons)
2. Flicker noise
Simulations (HSPICE)
NLEV=2, 3
di12/ f
KF g m2
1

df
Cox Weff Leff f AF
BSIM3v3 (NIMOD=2)
Measurments – short channel effects
( hot electrons, RST noise)
2004
CROSSTALK
DIGITAL
BLOCKS
GENERATION
ANALOG
BLOCKS
SILICON SUBSTRATE
TRANSFER
EFFECT
Transfer:
– common supply lines: parasitic inductance and resistance (Vind=LdI/dt)
– common substrate: (substrateepi, VT=f(VSB), gmb)
Effects for analogue blocks: switching noise, oscillation etc.
Minimisation:
– reducing the noise generation,
– increasing the immunity of analogue part,
– isolation techniques.
2004
MATCHING - identically design devices have different parameters
P=P1-P2 (P/P)
L
L
AP2
 P  
 SP2 D 2
WL
2
W
W
Number of cases
RANDOM MATCHING
P/P [%]
D
For MOS transistors: VT0 , , 
VT0   MS  2  F 
4q s  F N B
Qox

Cox
Cox
CMOS 0.7m - (VT0)
NMOS
PMOS
W/L=2m/0.7m
9.72 mV
19.43 mV
W/L=1500m/1.5m
0.31 mV
0.63 mV
   Cox
W
L

2q s N B
Cox
2004
1. Matching  bias condition
differences: VT, , R
a)
a)
Vosr
b)
VDD
R1
V  V  R  
  VT  GS T  

 R
2
 

R2
OUT1
IREF
OUT2
IN1
IN2
M1
M2
b)
I DS
2


VT 
I DS
VGS  VT

VDD
IBIAS
M0
IDS1
IDS2
M1
M2
2. Reduce sensitivity - proper configuration (Kv Ci/Cj)
3. Monte-Carlo analysis using
HSPICE
4. Symmetry in layout
(matching data for given technology)
– common centroid geometry, unit cells,
– bias, temperature, orientation,
– surrounding, metal coverage
2004
X-ray imaging using silicon strip detectors
Key system issues:
– fully parallel signal processing for all channels.
– only binary information (yes/no) is extracted from each strip.
– data from each channel must be stored in the local buffer for
the whole measurement period.
Signal 10x smaller
Stochastic
X-rays
current pulses
High Energy Physics
100 m
data, control
Silicon strip detector
PC
computer
Integrated circuit
2004
RX64DTH - fully integrated 64-channel chip (CMOS 0.8 m process)
RX64DTH consists of:
– 64 front-end channels (preamplifier, shaper, two discriminators)
– 128 pseudo-random counters (20-bit)
– internal DACs: two 8-bit threshold setting and and three 5-bit
for bias
– internal calibration circuit (square wave 1mV-30 mV)
– control logic
– I/O circuit (interface to external bus)
37006500 m2
2004
Single analogue channel
V
VT-HIGH
0
V
V
VT-LOW
C3
t
t
t
Tp
C2
Shaper
1
C5
0
Preamplifier
Discriminators 
Key design issues:
– low noise (ENC  200 el. rms, sensor )
– low power (3-5 mW/channel)
– relatively fast shaping (Tp = 0.5  1s)
– uniformity from channel to channel (gain, offset, noise)
– immunity to switching noise
2004
Preamplifier
&
shaper
V
V
t
t
SENSOR:
Cdet
Idet
Rbias
Tp
LIMITATIONS
Minimum of noise (transistor dimensions, bias)
1. POWER
dvn2
b
a
df
f
Fv Cin2
ENC  a
 bFvf Cin2  cFiTp
Tp
din2
c
df
3. SENSOR
4. PSRR, stability, matching.
Hand calculation
K 1 1
dvn2 8
1
 kT
 2f
df
3 gm1 Cox W1L1 f
2
n
di
4kT 4kT
 2qI DET 

df
Rbias R fed
M1: 500/1
2. PEAKING TIME
M5: 2/120
Simulation
HSPICE
Measurements
(bias, temp., Tp)
DAC currents
Other
transistors
M4: 100/10
–
IFED
– IFEDSH
– ICAS
Id = 500 A
2004
ENC
versus
Peaking Time
V
t
Noise types
Tp
ENC – total noise
ENCW – white voltage noise
ENCf – 1/f voltage noise
ENCi – white current noise
TP [s]
Peaking time TP
• Optimal
 the lowest noise
• Fast Front-end
 increasing noise
2004
Discriminator – offsets, crosstalk
1
V
0
VT-HIGH
VT-LOW
t
Tp
1
• AC coupling
• differential stage (CMRR)
• hysteresis
0
• power supply lines, guard
rings
2004
Pseudo-random counters
– 20 bit counters (large dynamic range of the image)
– small layout area (only 8 transistor per bit)
– 128 counters are grouped in the 8 blocks of 16 counters each
(8 bit I/O bus to minimize the dead time)
2004
Functionality & testability
Calibration circuits: Qinj=CtVcal (500 el - 13000 el)
Internal DACs: threshold setting, gain, peaking time
Command code
Action
000
SetGateStatus
001
ReadoutDestructive
010
ReadoutNonDestructive
011
CalibrationPulseLong
100
CalibrationPulseShort
101
CounterPulse
110
LoadDac
111
Unused code
I/O circuits:
2 x threshold 8-bit
3 x bias
5-bit
1 x calibration 4-bit
6 dacs
• LVDS standard (command, clock)
• 8-bit data bus (tristate),
• 3-bit address (up to 8 chips)
2004
LAYOUT - floor plan, bias lines, pads
Floor plan
2
– preamplifier & shaper
– discriminators 3
– counters & IOs 4
– digital outputs 12
– control logic 5
– calibration 6
– bias DACs 7
Isolation techniques
8
– reduce inductance (separate
bias line,pads), 9 10 11 14
– floor plan, bias lines
– keep “clean” substrate – LVDS
13
– RC filters
– guard rings, shielding
Digital
guard ring
Analog
guard ring
Digital
ground
Middle
ring
Analog
ground
2004
Window – threshold DAC’s
0,5
800
0,4
0,3
600
0,2
500
0,1
400
0,0
300
-0,1
Error [LSB]
Voltage [mV]
700
-0,2
200
-0,3
100
-0,4
0
-0,5
0
50
100
150
200
250
Dacvalue
value [LSB]
Dac
[LSB]
– two independent DACs
– common centroid matrix
– mixed matrices
– matching problem
– need software correction
20
6
5
4
10
3
2
5
1
0
3,67eV/el
Difference between
DAC HIGH and LOW
7 LSB
0
0
Silicon:
Difference [LSB]
[LSB]
Difference
[mV]
Difference
Difference
[mV]
15
50
100
150
200
250
Dac value [LSB]
Dac value
[LSB]
2004
Noise
IFED
[LSB]
IFED
SH
[LSB]
ICAS
[LSB]
32
32
32
32
32
32
Temp.
versus
ICAS & Temp
Gain
[V/el]
()
Offset
[mV]
()
ENC
[el. rms]
8 keV
ENC
[el. rms]
20 keV
ENC
[el. rms]
Cal 10
room
57.63
(0.34)
-9.23
(1.91)
248
(6.1)
232
(7.7)
232
(24)
32
room
56.79
(0.34)
-11.84
(1.91)
251
(6.1)
234
(8.5)
32
40
room
32
32
48
room
32
32
56
room
VTH = 255
VTL = scan
VTH = scan
VTL = 255
219
(24)
56.30
(0.37)
-11.50
(1.96)
233
(7.5)
217
(7.3)
213
(15)
Source Pu238 + Cu
203
(13)
32
32
56
25°
Vdet = 130 V
191
32
32
63
25°
Vdd
= 4.0 V
185
32
32
63
20°
Vddd = 4.0 V
175
32
32
63
18°
Peltier element for temp.
163
Controled
Temp.
2004
Noise
versus
IFED
IFED
[LSB]
IFEDSH
[LSB]
ICAS
[LSB]
Temp.
Gain
[V/el]
()
Offset
[mV]
()
ENC
[el. rms]
8 keV
ENC
[el. rms]
20 keV
24
32
63
20°
54.86
(0.39)
-17.62
(1.33)
198.9
(5.1)
205.9
(16.7)
32
32
63
20°
54.85
(0.44)
-17.85
(1.09)
203.1
(6.6)
201.5
(8.22)
40
32
63
20°
54.86
(0.45)
-17.55
(1.26)
220.7
(8.5)
213.7
(9.47)
48
32
63
20°
54.84
(0.49)
-16.96
(1.30)
238.2
(9.2)
228.6
(9.46)
– gain & offset const
– window is 5 LSB
– Peltier element
}
fast
noise
increasing
pin-holes in detector  leakeage current  dead channels because
out of operating point
increase IFED but ...
rescue
2004
Simulation: TP & Gain as a function of IFEDSH
Impulse height
shaper

output
TP
• TP = 0.7 – 1 s
• Impulse fall ends  4 s  200 kHz
2004
Gain, Offset & Noise
versus
IFEDSH
– window is 5 LSB
IFED
[LSB]
IFEDSH
[LSB]
ICAS
[LSB]
Temp.
Gain
[V/el]
()
Offset
[mV]
()
ENC
[el. rms]
20 keV
32
16
63
20°
80.54
(0.57)
-0.8
(0.9)
177.5
(4.91)
32
24
63
20°
63.74
(0.52)
-11.68
(1.11)
197.6
(8.69)
54.85
(0.44)
-17.85
(1.09)
201.5
(8.22)
32
32
63
20°
32
40
63
20°
50.2
(0.36)
-20.59
(1.24)
206.5
(9.42)
32
48
63
20°
47.64
(0.35)
-21.67
(1.39)
209.9
(8.92)
32
63
63
20°
45.52
(0.32)
-22.82
(1.22)
210.7
(9.36)
– Peltier element
max (slow)
peaking
time
TP
min (fast)
2004
Summary
1.
Multichannel mix-mode ASIC :
— critical parameters connected together
— looking for a golden solution
2.
Software corrections :
— DACs problem
— differences between the chips
3.
Noise controling :
IFED
– better detector  lower noise
ICAS
– the highier the beter (cooling ?)
IFEDSH – high gain gives low noise and speed
4.
To do – measurements
— speed
— uniformity in 6-chip module
2004
Related documents