Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Progettazione di circuiti e sistemi VLSI Anno Accademico 2010-2011 Lezione 5 15/18.3.2011 L’inverter CMOS L'Inverter CMOS 1 The CMOS Inverter: A First Glance V DD V in V out CL L'Inverter CMOS 2 CMOS Inverter N Well VDD VDD PMOS 2l Contacts PMOS In Out In Out Metal 1 Polysilicon NMOS NMOS GND L'Inverter CMOS 3 Two Inverters Share power and ground Abut cells VDD Connect in Metal L'Inverter CMOS 4 CMOS Inverter First-Order DC Analysis V DD V DD Rp V out V out VOL = 0 VOH = VDD VM = f(Rn, Rp) Rn V in = V DD V in = 0 L'Inverter CMOS 5 CMOS Inverter: Transient Response V DD V DD tpHL = f(R n .CL) = 0.69 Rn CL Rp V out V out CL CL Rn V in = 0 V in = V DD (a) Low-to-high (b) High-to-low L'Inverter CMOS 6 Voltage Transfer Characteristic L'Inverter CMOS 7 PMOS Load Lines VDD PMOS IDn V in = V DD +VGSp IDn = - IDp V out = VDD +VDSp In Out NMOS V out IDp IDn IDn Vin=0 Vin=0 Vin=1.5 Vin=1.5 V DSp V DSp Vout VGSp=-1 VGSp=-2.5 Vin = V DD+VGSp IDn = - IDp L'Inverter CMOS Vout = V DD+VDSp 8 CMOS Inverter Load Characteristics ID n PMOS Vin = 0 Vin = 2.5 Vin = 0.5 Vin = 2 Vin = 1 NMOS Vin = 1.5 Vin = 1.5 Vin = 1 Vin = 1.5 Vin = 1 Vin = 2 Vin = 0.5 Vin = 2.5 Vin = 0 Vout L'Inverter CMOS 9 CMOS Inverter VTC NMOS off PMOS res 2.5 Vout 2 NMOS s at PMOS res 1 1.5 NMOS sat PMOS sat 0.5 NMOS res PMOS sat 0.5 1L'Inverter 1.5 CMOS 2 NMOS res PMOS off 2.5 Vin 10 Switching Threshold as a function of Transistor Ratio 1.8 1.7 1.6 1.5 M V (V) 1.4 1.3 1.2 1.1 1 0.9 0.8 10 0 10 L'Inverter CMOS W /W p n 1 11 Determining VIH and VIL Vout V OH VM V in V OL V IL V IH A simplified approach L'Inverter CMOS 12 Inverter Gain 0 -2 -4 gain -6 -8 -10 -12 -14 -16 -18 0 0.5 1 1.5 2 2.5 V (V) in L'Inverter CMOS 13 Simulated VTC 2.5 l VIL=1.03 VIH=1.45 2 NMH=1.05 1.5 Vout(V) NML=1.03 1 0.5 0 0 0.5 1 1.5 2 2.5 V (V) in L'Inverter CMOS 14 Gain as a function of VDD 2.5 0.2 2 0.15 Vout(V) Vout (V) 1.5 0.1 1 0.05 0.5 Gain=-1 0 0 0.5 1.5 1 2 2.5 0 0 V (V) 0.05 0.1 V (V) 0.15 0.2 in in L'Inverter CMOS 15 Impact of Process Variations 2.5 2 Good PMOS Bad NMOS Vout(V) 1.5 Nominal 1 Good NMOS Bad PMOS 0.5 0 0 0.5 1 1.5 2 2.5 Vin (V) L'Inverter CMOS 16 Propagation Delay L'Inverter CMOS 17 CMOS Inverter Propagation Delay Approach 1 VDD tpHL = CL Vswing/2 Iav CL Vout ~ Iav CL kn VDD Vin = V DD L'Inverter CMOS 18 CMOS Inverter Propagation Delay Approach 2 VDD tpHL = f(Ron.CL) = 0.69 RonCL Vout ln(0.5) Vout CL Ron 1 VDD 0.5 0.36 Vin = V DD RonCL L'Inverter CMOS t 19 CMOS Inverters VDD PMOS 1.2mm =2l Out In Metal1 Polysilicon NMOS GND L'Inverter CMOS 20 Transient Response 3 2.5 ? Vout(V) 2 tp = 0.69 CL (Reqn+Reqp)/2 1.5 1 tpHL tpLH 0.5 0 -0.5 0 0.5 1 1.5 t (sec) 2 2.5 -10 x 10 L'Inverter CMOS 21 Design for Performance • Keep capacitances small • Increase transistor sizes – watch out for self-loading! • Increase VDD (????) L'Inverter CMOS 22 Delay as a function of VDD 5.5 5 tp(normalized) 4.5 4 3.5 3 2.5 2 1.5 1 0.8 1 1.2 1.4 1.6 V 1.8 2 2.2 2.4 (V) DD L'Inverter CMOS 23 NMOS/PMOS ratio -11 5 x 10 tpHL tpLH tp(sec) 4.5 b = Wp/Wn tp 4 3.5 3 1 1.5 2 2.5 3 3.5 4 4.5 5 b L'Inverter CMOS 24 Inverter Sizing Due inverter in cascata CL=(Cdp1+Cdn1)+ (Cgp2+Cgn2) + CW= (1+β)(Cdn1+Cgn2) +Cw tp=(tpHL +tpLH)/2=0.69 CL(Reqn+Reqp)/2 = =0.345 ((1+β)(Cdn1+Cgn2) +CW) Reqn(1+r/β) dove r=Reqp/Reqn con stesse dimensioni PMOS e NMOS per δtp/δβ= 0 βopt=sqrt (r (1+ CW/(Cdn1+Cgn2))) L'Inverter CMOS 25 Inverter Chain In Out CL If CL is given: - How many stages are needed to minimize the delay? - How to size the inverters? May need some additional constraints. L'Inverter CMOS 26 Inverter Delay • Minimum length devices, L=0.25mm • Assume that for WP = 2WN =2W • same pull-up and pull-down currents • approx. equal resistances RN = RP • approx. equal rise tpLH and fall tpHL delays • Analyze as an RC network WP RP Runit Wunit -1 WN Runit Wunit tpHL = (ln 2) RNCL -1 2W W RN RW tpLH = (ln 2) RPCL Delay (D): W Cunit Load for the next stage: C gin 3 Wunit L'Inverter CMOS 27 Inverter with Load Delay RW CL RW Load (CL) tp = k RWCL k is a constant, equal to 0.69 Assumptions: no load -> zero delay Wunit = 1 L'Inverter CMOS 28 Inverter with Load CP = 2Cunit Delay 2W W Cint CL Load CN = Cunit Delay = kRW(Cint + CL) = kRWCint + kRWCL = kRW Cint(1+ CL /Cint) = Delay (Internal) + Delay (Load) L'Inverter CMOS 29 Delay Formula Delay ~ RW Cint C L t p kRW Cint 1 C L / Cint t p 0 1 f / Cint = Cgin with 1 f = CL/Cgin - effective fanout R = Runit/W ; Cint =WCunit tp0 = 0.69RunitCunit L'Inverter CMOS 30 Apply to Inverter Chain In Out 1 2 N CL tp = tp1 + tp2 + …+ tpN C gin, j 1 t pj ~ RunitCunit 1 C gin , j N N C gin, j 1 , C gin, N 1 C L t p t p , j t p 0 1 C j 1 i 1 gin, j L'Inverter CMOS 31 Optimal Tapering for Given N Delay equation has N - 1 unknowns, Cgin,2 – Cgin,N Minimize the delay, find N - 1 partial derivatives Result: Cgin,j+1/Cgin,j = Cgin,j/Cgin,j-1 Size of each stage is the geometric mean of two neighbors C gin, j C gin, j -1C gin, j 1 - each stage has the same effective fanout (Cout/Cin) - each stage has the same delay L'Inverter CMOS 32 Optimum Delay and Number of Stages When each stage is sized by f and has same eff. fanout f: f N F CL / Cgin,1 Effective fanout of each stage: f NF Minimum path delay t p Nt p 0 1 N F / L'Inverter CMOS 33 Example In C1 Out 1 f f2 CL= 8 C1 CL/C1 has to be evenly distributed across N = 3 stages: f 38 2 L'Inverter CMOS 34 Optimum Number of Stages For a given load, CL and given input capacitance Cin Find optimal sizing f ln F N CL F Cin f Cin with N ln f t p 0 ln F f t p Nt p 0 F / 1 ln f ln f t p t p 0 ln F ln f - 1 - f 0 2 f ln f 1/ N For = 0, f = e, N = lnF L'Inverter CMOS f exp 1 f 35 Optimum Effective Fanout f Optimum f for given process defined by f exp 1 f fopt = 3.6 for =1 L'Inverter CMOS 36 Normalized delay function of F t p Nt p 0 1 N F / L'Inverter CMOS 37 Power Dissipation L'Inverter CMOS 38 Where Does Power Go in CMOS? • Dynamic Power Consumption Charging and Discharging Capacitors • Short Circuit Currents Short Circuit Path between Supply Rails during Switching • Leakage Leaking diodes and transistors L'Inverter CMOS 39 Dynamic Power Dissipation Vdd Vin Vout CL L Energy/transition = C * V 2 dd 2 dd Power = Energy/transition *f* Not a function of Ltransistor sizes! dd Need to reduce C , V , and f to reduce power. L'Inverter CMOS 40 Modification for Circuits with Reduced Swing Vdd Vdd Vdd -Vt CL E0 1 = CL Vdd Vdd – Vt Can exploit reduced sw ing to low er power (e.g., reduced bit-line swing in memory) L'Inverter CMOS 41 Node Transition Activity and Power Consider switching a CMOS gate for N clock cycles E N = CL V dd2 n N EN : the energy consumed for N clock cycles n(N ): the number of 0->1 transition in N clock cycles EN 2 n N P avg = lim -------- fclk = lim ----------- C Vdd f clk N N N N L 0 1 = n N lim -----------N N P avg = 0 1 C Vdd 2 f clk L L'Inverter CMOS 42 Energy Delay Product PDP (Power Delay Product) = PavTp=CLVDD2/2 Energia per commutazione EDP = PDP x tp tp=αCLVDD/(VDD-VTe) dove VTe=VT+VDSAT/2 EDP = αCL2VDD3/2(VDD-VTe) VDDopt = 3/2VTe L'Inverter CMOS 43