Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
A Monolithic Pixel Detector in High-Voltage Technology Ivan Perić University of Mannheim This work draws on the results from an ongoing research project commissioned by the Landesstiftung Baden-Württemberg Overview Introduction to the high-voltage CMOS process The idea behind the HV monolithic pixel Pixel electronics Electrical tests - Noise - Threshold dispersion - Time over threshold Measurements with radioactive sources - Estimation of the average MIP signal - Images Outlook VERTEX 2006 High-Voltage Technology Two commonly used devices G S D n+ n+ n- Channel Asymmetrical high-voltage NMOS Low-doped N-well Large depleted zone p- High voltages up to 50 – 70V P-well implanted inside the N-well G B S n+ D Channel n+ pn- Vertical HV NMOS VERTEX 2006 Deep N-well p- Floating CMOS (Cross-Section) Properties of the chosen technology Shallow N-well P-well P-well Deep N-well P Substrate VERTEX 2006 50 V 9 m - Maximal nominal reverse bias of deep N-well/P-substrate diode: 50 V - Depleted area of the diode: maximal ~ 9m - expected average MIP signal in the depleted zone: 703 e - Minimum gate size: 0.35 m Monolithic Pixel Detector in HV Technology 4 pixels Negatively biased P-substrate Pixel-electronics inside the cathode (N-well) Sensor cathode (N-well) VERTEX 2006 Test Chip The first test-chip have been implemented in a 0.35 m HV CMOS Process Motivations - to investigate the properties of deep N-well/P-substrate diode as a particle sensor - to demonstrate that it is possible to implement complex CMOS pixel electronic in the diode cathode (The electronics can involve - signal amplification, - continuous bias/reset, - threshold discrimination, - hit bit storage - time stamp electronic) VERTEX 2006 Pixel Electronic as implemented in the Test Chip 3.3 V CR-RC Comparator Latch Bus driver CSA Readout bus Tune DAC AC coupling -50 V HV N-well P-substrate The challenge: N-well is the sensor cathode and the carrier for the PMOS transistors at the same time - Biasing of the N-well - Signal cross-talk - Prevention of the latch-up VERTEX 2006 Amplifier Capacitive feedback: 0.9 fF (drain diffusion) + 1.3 fF (metal-metal parasitic) N-well c N-well 420 fF In a Load bias d 10/0.6 d Out Cascode bias P-Substrate Bias 9A High gain CSA The cross-talk: every P-diffusion (a, b, c, d) is capacitively coupled to the sensor Non-standard design VERTEX 2006 Continuous Reset Bias circuit Bias 30 pA Continuous feedback with limited current* In * Out Feedback Current Output Volt. VERTEX 2006 Discharge with constant current ToT CR-RC Shaper From now on, only NMOST… 30 pA Base line bias 0.86 nA Base line Base line bias 22.1 fF (poly) Amplifier out 0.6 nA Base line Foll. bias 7.6 fF (par.) Disable CR-RC Threshold bias Threshold Pulse length is the linear measure of the input signal amplitude Tune DAC Tune VERTEX 2006 Simulation Response to the signal of 1660 e 0,18 0,16 Amplifier output Shaper output Amplifier Output* 0,14 0,12 Signal/V 0,10 Simulated amplifier output without parasitic capacitances 0,08 0,06 Simulated amplifier output with parasitic capacitances 0,04 0,02 0,00 -0,02 0 1 2 3 Time/s VERTEX 2006 4 5 Comparator and Latch Differential current logic with NMOS diode as load to avoid digital cross-talk Comparator/Buffer Latch OutP OutN InN InP Bias OutN OutP SetN 6A SetP ResN Bias VERTEX 2006 ResP Pixel Top-View Bias (PMOS) Amplifier and FB (PMOS) Injection Capacitor FB (NMOS) Input Capacitor Amplifier (NMOS) Feedback CR-RC Shaper Select P-Well Reset 4 RAM Cells (NMOS + PMOS) All-NMOS Comparator NMOS Latch and Bus Driver VERTEX 2006 Bus DAC Detector Capacitance The large detector capacitance limits the performances of the detector C(N-well/P-sub) ~ 38 fF C(N-well/P-well) = 180 fF! VERTEX 2006 Test-Chip Scheme Test pulse Disable Load DAC Bias DACs Select Mux + shift register Reset #2 DAC bits Sensor Electronic Mux + shift register Digital output VERTEX 2006 ToT output Noise (Theory) RB CF ~ 2.2 fF RF ~ 0.79 G CZ ~ 22 fF RZ ~ 0.060 G CFOLL ~ 7.6 fF RFOLL ~ 0.056 G F CF RF Z CZ Cinj FOLL Comparator RFOLL CSA RZ ~Sn(RF ~Sn(CDET)2 )2 Z F FOLL Input current noise (spectral power density) VERTEX 2006 CFOLL Z F FOLL Input transistor noise (SPD) Noise (Measurements) 120 90 Diode Regular pixel Noise vs bias resistance 80 100 80 Regular pixel: 85 e Diode: 30 e 60 Noise/e Noise/e 70 60 50 40 40 30 20 1 2 3 4 5 6 7 8 0 9 50 100 150 200 250 300 I bias res./pA Ampl. bias/A 90 36 Noise vs feedback resistance (RF) 34 80 Noise vs. reverse bias voltage 70 Noise/e Noise/e 32 30 28 26 0 10 20 30 40 Reverse voltage/V VERTEX 2006 50 60 I bias res = 260 pA 60 50 I bias res = 130 pA 40 I bias res = 0 0 2 4 6 GFB/nSi 8 10 12 Threshold Dispersion Tuned Raw 18 16 16 Sigma: 1.1mV Mean: 1.250V 14 14 Number of pixels Number of pixels 927e 1544e 18 20 12 Sigma: 75e Mean: 830e 10 8 6 4 2 Sigma: 0.75mV Mean: 1.261V 12 10 8 6 4 2 0 0 500 1000 1500 2000 2500 Threshold/e Measured sigma of 75 e VERTEX 2006 3000 3500 0 1,248 1,250 1,252 1,254 1,256 1,258 1,260 1,262 1,264 Threshold/V Dispersion of tuned thresholds remains unchanged Time over Threshold 1600 ToT Calibration 1400 1200 Output signal Threshold ToT/Clk 1000 800 600 400 200 0 Time over threshold 0,0 0,5 1,0 1,5 2,0 2,5 Input Signal/V Fit-function: Signal 1 ToT ln exp VERTEX 2006 3,0 Fe-55 1400 0,040 Fe-55, Diode, 55V Hit probability Number of hits Regular pixel 0,030 1000 800 600 400 0,025 0,020 0,015 0,010 200 0,005 0 0,000 0 50 100 150 200 250 300 0 ToT/Clk 0,0020 20 40 60 80 100 120 140 160 180 200 ToT/Clk 0,0014 0,0018 Fe-55, 50V Fe-55, Diode 0,0016 0,0012 0,0012 0,0010 0,0008 0,0006 2V 50V 0,0010 Hit probability Regular pixel Diode 0,0014 Hit probability Fe-55, Regular pixel 55V 0,035 Diode 1200 0,0008 0,0006 0,0004 0,0004 0,0002 0,0002 0,0000 0,0000 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Signal/e VERTEX 2006 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Signal/e Decrease of depleted zone reflects in the smaller peak Spectra of the Sr-90 and Co-60 Sr-90 2.283 MeV (0.935 MeV) 0.546 MeV (0.196 MeV) Co-60 1.333 MeV 0.316 MeV 1.173 MeV L=450 m VERTEX 2006 Filtering of low-energy Electrons (Sr-90) (0.935 MeV) 0.546 MeV Plastic 1.9 mm (2-2.1 MeVcm2/g) 2 mm =0.9 g/cm3 (~0.57 MeV) Si 0.7 mm (1.6-1.9 MeVcm2/g) (MIP: 1.5 MeVcm2/g) =2.3 g/cm3 (~0.28 MeV) VERTEX 2006 Sr-90 180 400 160 Number of hits 350 300 ToT/Clk Sr-90, Regular pixel, 55V 200 Calibration 450 a) b) 220 500 250 200 150 140 120 80 60 100 40 50 20 0 MIP Signal: 2000e/1.17 = 1710 e Low energy peak: 1.080 e 100 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 100 200 300 Signal/e 400 500 600 700 800 700 800 ToT/Clk 1,1 Regular pixel, 55V 1,0 0,9 Fe-55 Sr-90 ~hit probability 0,8 a) 0,7 0,6 0,5 0,4 0,3 0,2 b) 0,1 0,0 0 100 200 300 400 ToT/Clk VERTEX 2006 500 600 Bias Voltage and Co-60 High energy peak moves to lower energies when bias voltage decreases 0,0050 0,0045 Co-60, Diode #2, 60V 0,0040 Hit probability 0,0035 0,0030 0,0025 0,0020 0,0015 0,0010 0,0005 0,0000 0 100 200 300 400 500 600 700 800 900 1000 ToT/Clk 0,0050 0,0050 0,0045 0,0045 Co-60, Diode #2, 0V 0,0040 0,0040 0,0035 0,0035 Hit probability Hit probability Co-60, Diode #2, 30V 0,0030 0,0025 0,0020 0,0015 0,0030 0,0025 0,0020 0,0015 0,0010 0,0010 0,0005 0,0005 0,0000 0,0000 0 100 200 300 400 500 600 700 800 900 1000 ToT/Clk VERTEX 2006 0 100 200 300 400 500 600 700 800 900 1000 ToT/Clk Bias Voltage and Co-60 High energy peak moves to lower energies when the bias voltage decreases 0,0050 0,0045 Co-60, Diode #2, 60V 0V 30V 0,0040 Hit probability 0,0035 0,0030 0,0025 0,0020 0,0015 0,0010 0,0005 0,0000 0 100 200 300 400 500 600 700 800 900 1000 ToT/Clk VERTEX 2006 Fe-55 Image The matrix was tuned, mean threshold at about 830 e Fe - 55 Shadow of a wire Shadow of a micrometer 500,0 800,0 475,0 750,0 450,0 700,0 425,0 650,0 600,0 400,0 375,0 350,0 550,0 500,0 450,0 325,0 300,0 275,0 400,0 250,0 350,0 225,0 300,0 200,0 250,0 175,0 200,0 150,0 150,0 100,0 125,0 100,0 75,00 50,00 0 50,00 25,00 0 VERTEX 2006 Co-60 Irradiation Pixels at the matrix edges sense more signals than the inner pixels 2200 2140 2080 2020 1960 1900 1840 1780 1720 1660 1600 1540 1480 1420 1360 1300 1240 1180 1120 1060 1000 VERTEX 2006 Summary The idea: - The use of reverse biased N-well/P-substrate diode as sensor - Depleted zone of ~ 9 m can be induced by applying of relatively high bias voltage - CMOS pixel electronics can been implemented in the sensor cathode (N-well) The first test-chip have been implemented in a 0.35 m HV CMOS Process The pixel electronics comprises - Charge sensitive amplifier and CR-RC shaper Continuous reset and bias Threshold discrimination with 4-bit tune DAC NMOS-based latch and bus driver Various electrical test demonstrate fully functionality of the detector The average MIP signal estimated from the measurements with Sr-90 radioactive sources is 1710 e – it is by far more than expected; probably due to collection of the signal from bulk Noise is about 80 e Threshold dispersion is 75 e Test-beam measurement has to be done; from the presented results I expect good efficiency of the detector New submission with different test matrices is planned VERTEX 2006 Thank you for your attention VERTEX 2006 Future Plans (pulsed Reset and DKS) Reset Sample CSA TCA AC Coupling Simpler designs, which lead to smaller detector capacitance, has to be tested VERTEX 2006 Readout Bus Standard MAPS The use of epi layer (or low-ohmic substrate) as sensor - Charge collection mainly through diffusion - very low sensor capacitance Only NMOS transistors in the pixel Amplified signal N-well Epi-layer Substrate VERTEX 2006 Triple-Well MAPS The use of epi layer (or low-ohmic substrate) as sensor and deep N-well as collecting electrode - Charge collection mainly through diffusion - Higher sensor capacitance CMOS electronics in pixel… but PMOS transistors are placed in the separate N-well N-well Epi-layer Substrate VERTEX 2006 MAPS in HV Technology The use of high-voltage N-well/P-substrate diode as sensor - Relatively large depleted zone with strong electric field Efficient charge collection Fast signals Better radiation tolerance Fully implementation of CMOS electronics inside the sensor cathode thanks to triple well option - Large cathode area but… moderate capacitance due to thick depleted areas VERTEX 2006 Capacitances - Simulation 110 10 Deep nwell capacitance vs reverse bias 2 Nwell area ~ 50X50 m 100 Depleted layer thickness vs reverse bias 9 90 Thickness/um Capacitance/fF 8 80 70 60 7 6 5 50 4 40 3 30 0 10 20 30 40 50 60 0 10 20 30 40 50 Voltage/V Voltage/V 350 P-well capacitance vs its reverse bias Capacitance/fF 300 250 200 150 This can be potentially useful! 100 0 5 10 15 Reverse bias/V VERTEX 2006 20 25 60 Small-Signal Measurements Time over threshold distribution after many injections 600 260 550 240 600e, regular pixel 220 500 360 e, diode 450 180 Number of signals Number of signals 200 160 140 120 100 80 60 400 350 300 250 200 150 40 100 20 50 0 0 0 50 100 150 200 ToT/Clk Regular pixel, 600 e VERTEX 2006 250 300 0 50 100 150 200 ToT/Clk Diode, 360 e 250 300 Noise Specification Undetected Signal Signal Amplitude Too high threshold Noise 6 noise + 6 threshold Threshold j Threshold i Threshold Dispersion Too low threshold Noise Base Line Noise Hit 6 noise + 6 threshold < Signal VERTEX 2006 Hit Multiplicity Larger range of Co-60 signals respecting to Fe-55 1,0 Distribution of multiple hits ~ Probability 0,8 Fe-55 Co-60 0,6 0,4 0,2 0,0 1 2 3 4 5 6 7 Number of pixels hit VERTEX 2006 8 9 10