Download A 1-V 15 mW High-Precision Temperature Switch

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Philips Research
University of Twente, Faculty of Electrical Engineering
A 1-V 15 mW High-Precision
Temperature Switch
D. Schinkel, R.P. de Boer,
A.J. Annema and A.J.M. van Tuijl
A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
Contents
•
•
•
•
•
•
Introduction
Circuit fundamentals
Design strategy
Implementation
Specifications
Conclusions
A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
Introduction
Why need integrated CMOS temperature
indicator?
– enable thermal protection (shutdown,clock
frequency lowering etc.)
– use in integrated measurement or control
devices
A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
Introduction
Why design switch and not a linear
temperature dependent output?
– Thermal protection only requires threshold
temperature detection (125 °C)
– Multiple threshold values together form a
digital temperature indicator
A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
Design goals
•
•
•
•
•
•
Standard 0.18 mm CMOS process
Low voltage, Low power, Small area
High accuracy
Portable
Switch temperature of 125 °C
Extendable:
adjustable switch temperature
multiple switch temperatures
high accuracy over large T range
A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
Circuit Fundamentals
Use bandgap principle:
V
Vgap,0
=
IPTAT
k*R
T
V
Vptat
A
T
R
V
Vbe
(1)
(n)
T
A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
Circuit Fundamentals
Detect crossing of Vptat with Vbe
V
=
Vbe
=
IPTAT
T
Binary
out
A
R1
V
R2
(1)
(n)
Vptat
T
A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
Design strategy
Identify accuracy limitations:
– Bipolar transistor Vbe spread
– Resistor matching & spread
– Offset and noise of MOST devices
Establish quantitative relation for
optimal MOST area distribution
A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
Design strategy
Io
Io
=
Io
=
Vo2
Vo1
Binary
out
A
R1
R2
(1)
 2V
comp
(n)
R

  V2o 2   V2o1  2  1
 R1

2
2




R

R
2
2
2
1
  R2 
  I o  2 
  ln( n) 



A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
Design strategy
Assume:

2
VGS
Av

WL
, 
2
ID
AI

WL
Find equivalent offset (or flicker noise):

2
tot
X3
X1
X2




Area1 Area2 Area3
Minimal total given fixed Areatotal when:
X3
X1
X2



2
2
2
Area1
Area2 Area3
A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
Implementation
Implementation goals:
– High amplifier gain; speed may be low.
– High supply and substrate noise rejection.
Implementation limitations:
– Low supply voltage  cascoding difficult.
– Folded cascodes not desirable
A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
Implementation
=
=
IPTAT
Binary
out
A
R1
R2
(1)
(n)
A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
Implementation
Vdd
Iout
Vin-
A
Vin+
Iout
Positive feedback;
high gain, small bandwidth
A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
Implementation
Strong points:
– Robust circuit, easy to port
– Small flicker noise & offset
straightforward use of large transistors instead of using
complex dynamic offset cancellation techniques.
– No cascoding or shielding  low supply voltage
– All matched transistors have matched conditions at
threshold temperature
A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
Implementation
Weak point:
– Nested inner loop  stability analysis not
straightforward
A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
Chip photograph
Diode
Resistors
connected
BJTs
Transconductance
amplifier
Comparator
190 mm
A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
150 mm
Specifications
This work
Other work
Supply voltage
1.0-1.8 V
2.2-5.5 V
Supply current
16mA
25mA DC
Technology
CMOS 0.18 mm
CMOS 2 mm
Area
0.03 mm2
1.5 mm2
Inaccuracy (3)
1.1C
1C
Calibration
No
Yes
DC supply sensitivity
0.05C/V
0.1C/V
Switch temperature
128.5C
-
Hysteresis
1.2C
-
A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
Conclusions
• Efficient & Robust Design strategy
• Very low power circuit
– can decrease further with duty-cycle mode
• Good performance without calibration
– 3 intra-batch deviation of only 1.1 C
• Design is well-suited for multiple
thresholds extension
A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
Philips Research
University of Twente, Faculty of Electrical Engineering
A 1-V 15 mW High-Precision
Temperature Switch
D. Schinkel, R.P. de Boer,
A.J. Annema and A.J.M. van Tuijl
A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
Philips Research
University of Twente, Faculty of Electrical Engineering
A 1-V 15 mW High-Precision
Temperature Switch
D. Schinkel, R.P. de Boer,
A.J. Annema and A.J.M. van Tuijl
A 1-V 15mW High-Precision Temperature Switch
D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl
Related documents