Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Fixed-gain CMOS Differential Amplifiers for the 40 K to 390 K Temperature Range Vratislav MICHAL, Alain J. KREISLER and Annick F. DÉGARDIN Paris Electrical Engineering Laboratory (LGEP), Gif sur Yvette, France Supélec; CNRS UMR 8507; UPMC - Univ Paris 06; Univ Paris Sud 11 Geoffroy KLISNICK, Gérard SOU and Michel REDON Electronics and Electromagnetism Laboratory (L2E), UPMC - Univ Paris 06 , 4 place Jussieu, Paris, France Research supported by a Marie Curie Early Stage Research Training Fellowship of the European Community’s Sixth Framework Programme under contract number MEST-CT-2005-020692 1/ 24 Outline I. Our objectives II. Introduction / design approach III.First design & results IV.Second design & results V. Conclusions Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 2/24 I. Our objectives Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 3/24 Goals of the project Development of wide temperature range CMOS readout amplifiers for YBaCuO bolometric detectors: Room temperature semiconducting Superconducting Requirements: 77K 40 dB, accurate static gain, 77 K to 300 K temperature range, OSC Differential gain BW: DC to several MHz, FFT Low noise operation, DSP ... High (> 100kΩ) input impedance, Low power consumption, Simple architecture. 290K R(T) G R(T) 290K Low noise Differential CMOS amplifier Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 4/24 II. Introduction / design approach Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 5/24 Four pixel configuration: differential amplification IB G + RB4 IB VB4 + G RB3 VB3 + G RB2 RBn G VBn VB2 - + G RB1 + VB1 - a) a) b) Structure of cascaded amplifier asymmetrical (Rbi is the steady state pixel resistance), b) Selected differential read-out technique. Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 6/24 II.1 Closed loop differential amplifiers Currently, fixed gain amplifiers are realized as closed-loop networks with resistor feedback (differential amplifier, instrumentation amplifier etc.) Thermal noise of resistors can be dominant! I+Vcc B R2 vn(R1) U/I vn(R1) vb +in R1 C - Vout R1 DUT (pixel) + vn(R1) vn(R2) A G2 -in Frequency compensation degrade the GBW and SR RP Out CRM2 CM=C(G2+1) -Vee G0=gmRP G0=gmRPG R vn ,in 8kTR2 1 2 f R1 Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 7/24 II.2 In-structure fixed gain (CMOS) + No resistors in the structure simplification and silicon surface save, reduced noise contribution + Absence of feedback improves the time characteristics (no stability problems), increases the BW and reduces the power consumption IB eb en en R1 R1 C1 G DUT (pixel) C1 * - Linearity, distortion - No developed architectures 8kBT ein R1 2 j Rb C1 j C 1 * Bolometer noise voltage is neglected Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 8/24 II.3 Open loop amplifiers: design approach I1 VDD I2 M2 +in + gm1 IL -in Vout G0 M1 - I1 VGS1 vout g m1 gm2 gm2 KPN W1 L1 KPP W2 L2 + VSS (a) (b) Gain is given by transistors geometry ratio Gain is given by ratio of gmx of OTA For current biased MOS architectures, the transconductance is given by: g m 2 KP W I D SAT L The 40dB gain can require the geometric ratio value of transistors up to 10 000×KP/KN! Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 9/24 II.4 Adopted technique VDD M1 : VDD VBIAS IM 2 M1 IL M5 M2 IL vout i2 + MOS diode transconductance given by g m 2 KP Decreasing the transconductance by current sink [PhD F. Voisin, 2005] W IL L gm' 2 KP W1 IL IM 2 L1 Current difference makes the function very sensitive: S gm' k 1 M2 M1 IL 2 VDD gm' ( k ) k k gm' ( k ) 1 k 2 1 k vL - M3 i4 M4 VSS 1 : 1 Proposed method for decreasing the transconductance by means of current scaling: W4 W1 L L W g m' 2 KPT2 2 4 1 L2 W3 W5 L L 3 5 Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau IL 10/24 III. First design & results Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 11/24 III.1 Design of 1st folded cascode amplifier in AMS 0.35µm VDD IB M1 vIn+ vInMD2 MC1 V BIAS M5 V OUT MD1 ID ID MC2 V BIAS IL IM M2 IM M3 M4 VSS DC transfer characteristic: VOUT VDD VTH , P W3 W5 L L 2 3 5 W2 W4 W1 KPP L2 L4 L1 2 W W 1 I M 1 4 I B KPP D VGS2 KPP D VGS 8 LD LD Gain is the slope of the DC transfer characteristic: dVout G0 d VGS VGS 0 IB 1 Leff WD , 2 Weff LD 2 I L ( VGS 0) where: Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau Weff Leff W2 W4 W1 L2 L4 L1 W3 W5 L3 L5 12/24 III.3 Measured DC and AC characteristics of 1st amplifier -7 100 10 40 40 -3dB 22 100V/V 11 Measured " voltage gain (dB) " Simulated 77K -60dB/ dec 20 50 20 10-8 10 296K 5.0 0 " input noise (nV/Hz½) " Vout 33 [V] 00 77K -1 -1 -0.030 -30 -0.015 -15 0 0.015 15 0.030 30 Vin [mV] DC transfer characteristic at 290 K -20 2 100 10 10k4 10 1M6 10 8 100M 1.0-9 10 10 " frequency (Hz) " AC response and input noise (VDD=5V, IQ=2mA) Simple fixed gain architecture: suitable for low noise and large BW operation, Gain is fixed by means of geometric ratio: no variation with temperature, Linearity is good for small signals, DC transfer characteristic √Vin. Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 13/24 IV. Second design & results Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 14/24 IV.1 2nd amplifier: Linearization of DC transfer characteristic VDD P Based on cancelling the quadratic terms in the basic equation of the MOS transistor. The node equation can be written: M2 I2 I0 V I1 1 V M1 2 N V VTH 1 VDD P-type IB IAUX In+ ID I0 TD I1 I2 ID IL V BIAS T2 2 2 VDD V VTH 2 2 I0 The extraction of output voltage leads to (assuming β1 = β2, VTH1 = VTH2): Low g m composite transistor In- TD V BIAS T1 2 V OUT Low g m composite transistor I0 VDD V 2 (VDD 2 VTH ) N-type IM IM IAUX =IM - IB 2 Linear low gm CMOS load Vin =0 Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 15/24 IV.2 Analysis of transfer function, temperature properties DC transfer function: IB VGS1 IAUX VGS1 I0 ID2 ID1 Low gm composite transistors Vout TP TP I1 P VBIAS Vi Vi=-Vo I2=I’2 IM1 IAUX =IM - IB 2 Gain is given by derivation: I2 Voltage/current invertot Vin =0 We replace the elements without temperature dependence by C: G0 T Vo I’2 IM2 2 P VOUT -1 IL W W 1 1 I B 4 I B KPP D VGS2 KPP D VGS 2 8 LD LD 1 VDD Weff 2 KPP VDD 2 VTH , P Leff C KPP (T ) VDD 2 VTH ,P (T ) G0 dVout d VGS VGS 0 1 2 IB KPP Weff Leff WD LD VDD 2 VTH , P G [dB] Which leads to: G0 T C 1 T KPP (T0 ) T0 x VDD 2 VTH , P (T0 ) 1 THX T T0 T[K] Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 16/24 IV.4 DC transfer characteristic 22 " output voltage (V) " dVout dVin 11 50 50 50 50 G G [dB] [dB] 40 40 40 40 dB (measured) 30 30 00 30 30 Measured ±2.0V ±2.2V ±2.5V 20 20 -1 -1 20 20 10 10 Simulated -2 -2 -30 -0.03 -20 -0.02 -10 -0.01 0 10 0.01 20 0.02 10 10 30 0.03 00 0 ~0 100 100 " input voltage (mV) " 200 200 300 400 T [K] DC measured transfer characteristic and measured voltage gain @ 2.5V, 290 K Temperature compensated linear amplifier for three VDD values (2nd amplifier type) Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 17/24 IV.5 Cryogenic tests: DC Vout [V] 2 Bleu 290K Vout [V] red 77K Vdd= +/- 2V 1 2 1 0 0 -1 -1 -2 -0.04 -0.02 0 0.02 0.04 Bleu 290K red 77K Vdd +/- 2.5V -2 -0.04 -0.02 0 Vin [V] 0.02 0.04 Vin [V] DC transfer characteristic for two DC supply values (2nd type linear amplifier) Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 18/24 V. Conclusions Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 19/24 V.1 Comparison with industrial state of the art Key parameters of developed amplifiers MEASURED PARAMETERS Operating supply voltage Quiescent bias current – 3dB bandwidth @ 290 K Input noise @ 290 K Input noise @ 77 K Gain @ 290K Δ Gain 270 K ÷ 390 K Gain error @ 77 K Tot. harm. distortion @ Vout = 0.3 Vpp TYPE I AMPLIFIER 4.1 V to 5.5 V 2.1 mA 10 MHz (GBW=1GHz) 5 nV/Hz½ 2 nV/Hz½ 39.85 dB – 0.12 dB – 1.2 dB 1% Industrial differential amplifiers TYPE II AMPLIFIER 3.6 V to 5.5 V 1.3 mA 4 MHz @ 5 V 5 nV/Hz½ 3 nV/Hz½ 39.3 dB @ 5 V – 0.5 dB @ 4 V – 1.3 dB @ 4 V 0.03 % (room temperature) Type Configuration GBW [MHz] SR [µV/s] VDD [V] Iq [mA] Input noise nV/√Hz AD8045 LTC6401-20 LT1226 OPA699 OPA2354 INA2331 INA103 OA Bipolar Fixed gain 20dB+/-0,6dB Bipolar OA Bipolar OA Bipolar OA CMOS Instrumentation CMOS Instrumentation BIPOALR 1000 1350 3.3 - 12 19 × 3 3 1300 1000 1000 250 50 80 4500 400 1400 150 5 15 2,85-3,5 5-36 5-12 2,7-5,5 2,5-5,5 9-25 50 × 3 7×3 22,5 × 3 7,5 × 3 0,5 9 2,1 2,6 4,1 6,5 46 1 Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau Other Rin=200Ω 25dB stable 12dB stable 20/24 V.2 Summary Two amplifiers, based on different techniques of gain setting, have been designed, fabricated and characterized by measurements in a wide temperature range. Both amplifiers exhibit very good performances, competitive with or superior to the industrial state-of-the-art. Small size and low consumption make them ideal as versatile blocks for VLSI integration. Wide temperature range operation demonstrates robustness of the design. Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 21/24 V.3 PCB test board with integrated ASIC Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 22/24 Appendix I: Differential (type I) amplifier designed for 40dB voltage gain IB MB3 600.5/8µ MB2 315/8µ 2360/2µ vin+ IB/2 MD2 IB/2 500/8µ M2 100/5µ vout vbias MB6 IM IM MB1 Ib=500µA MC2 501/8µ MB5 200/8µ VDD MO2 15/5µ 100/5µ MD1 400/8µ M5 2360/2µ MC2 501/8µ 38/5µ M1 vin- MB4 15/5µ IL M3 38/5µ MO1 M4 15/5µ Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 1000/2µ VSS 23/24 Appendix II: CMOS AMS 0.35µm realization of type II amplifier Schematic view of designed amplifier Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 24/24