Download Chapter 2 - Cambridge University Press

Document related concepts
no text concepts found
Transcript
CMOS Analog Design Using
All-Region MOSFET Modeling
Chapter 2
Advanced MOS transistor modeling
CMOS Analog Design Using All-Region MOSFET
Modeling
1
Semiconductors
 Four types of charge are present inside a
semiconductor: the fixed positive charge of ionized
donors, the fixed negative charge of ionized
acceptors, the positive mobile charge of holes, and
the negative mobile charge of electrons.
 We consider all donors and acceptors ionized
ND  N

D
and N A  N

A
 On this basis, the net positive charge density ρ is
  q ( N D  N A  p  n)
CMOS Analog Design Using All-Region MOSFET
Modeling
2
Boltzmann’s Law – (1)
 In equilibrium electrons and holes follow Boltzmann’s
law and their concentrations (number per unit
volume) are proportional to
e

-( Energy / kT )
 k=1.38x10-23 J/K - Boltzmann constant
 T - absolute temperature (K).
 electron and hole densities in equilibrium are related
to electrostatic potential  by
p( 1)
e
p( 2)

q ( 1 2 )
kT
 q=1.6x10-19 C
CMOS Analog Design Using All-Region MOSFET
Modeling
3
Boltzmann’s Law – (2)
 n0 and p0 - equilibrium electron and hole concentrations
in the neutral bulk (=0 )
p  p0e
u   / t

q
kT
 p0e
u
n  n0e
q
kT
 n0eu
- normalized electrostatic potential
t  kT / q - thermal voltage
 the mass-action law is
np  ni2
ni - concentration of electrons (and holes) in the intrinsic
semiconductor
CMOS Analog Design Using All-Region MOSFET
Modeling
4
Example: Calculate the built-in potential for a Si p-n
junction with NA = 1017 atoms/cm3 and ND = 1018
atoms/cm3 ,T=300K
In equilibrium, if we choose the potential origin  = 0 where the
semiconductor is intrinsic (i.e., where p0=n0=ni), then
p0  ni e
n0  ni e / t
 / t

Far from the junction in the n-side
n0  N D  ni e nregion
Far from the junction in the p-side
p0  N A  ni e
/ t
pregion / t
The built-in potential is given by
bi  n  region   p  region
 ND
 t ln 
 ni
bi  26  ln 1015   900 mV
 
 NA 
 ND N A 
   t ln 
   t ln 

2
n
n
 
 i 
 i 
CMOS Analog Design Using All-Region MOSFET
Modeling
5
The two-terminal MOS structure
CMOS Analog Design Using All-Region MOSFET
Modeling
6
The ideal two-terminal MOS structure
(VFB=0)
A
VG
Cox 
ox
tox
A - capacitor area,
Q
VG  s  G
Cox
+
s
_
QG  QC  0
QG
QC
M
tox - oxide thickness
O
ox - permittivity of oxide
S
QG 
QG
Cox  ox

; Cox 

A
A
tox
QC
VG  s 
Cox
CMOS Analog Design Using All-Region MOSFET
Modeling
7
Example: oxide capacitance
(a) Calculate the oxide capacitance per unit area for tox=
5 and 20 nm assuming ox = 3.90, where 0= 8.85·10-14
F/cm is the permittivity of free space. (b) Determine the
area of a 1pF metal-oxide-metal capacitor for the two
oxide thicknesses given in (a).
Answer: (a) =690 nF/cm2 = 6.9 fF/m2 for tox=5 nm and =
172 nF/cm2= 1.7 fF/m2 for tox= 20 nm. The capacitor
areas are 145 and 580 m2 for oxide thicknesses of 5
and 20 nm, respectively.
CMOS Analog Design Using All-Region MOSFET
Modeling
8
The flat-band voltage
In equilibrium (with the two terminals shortened/open), the
contact potential between the gate and the semiconductor
substrate of the MOS induces charges in the gate and the
semiconductor for VGB=0.
Charges inside the insulator and at the semiconductor-insulator
interface also induce a semiconductor charge at zero bias.
The effect of the contact potential and oxide charges can be
counterbalanced by applying a gate-bulk voltage called the
flat-band voltage VFB.
VG  VFB
QC
 s 
Cox
CMOS Analog Design Using All-Region MOSFET
Modeling
9
Example: flat-band voltage
(a) Determine the expression for the flat-band voltage of n+
polysilicon-gate on p-type silicon (b) Calculate the flat-band voltage
for an n+ polysilicon-gate on p-type silicon structure with NA = 1017
atoms/cm3.
Answer: (a) In equilibrium, by analogy with an n+ p junction, the
potential of the n+-region is positive with respect to that of the pregion. The flat-band condition is obtained by applying a negative
potential to the n+ gate with respect to the p-type semiconductor of
value
(b)
 NA 
VFB _ n  p  bi _ n  p  0.56 V  t ln 

 ni 
VFB  0.56 V  t ln 107   980 mV
CMOS Analog Design Using All-Region MOSFET
Modeling
10
Regions of operation of the MOSFET:
Accumulation (p-substrate)
VGB  VFB
QC  0
G
QG
- - - - - - - - - - VGB
Qo
+
+
+
+
++++++++++++++
Holes
QC
s  0
+ accumulate in
the p-type semiconductor
surface
B
CMOS Analog Design Using All-Region MOSFET
Modeling
11
Regions of operation of the MOSFET:
Depletion (p-substrate)
VGB  VFB
QC  0
G
QG
+ + + + + + + + +
VGB
Qo
+
- -- - - -Q - -- - - +
+
C
B
+
0  s   F
Holes evacuate from the P
semiconductor surface and
acceptor ion charges
become uncovered
-
F = Fermi potential ( to be defined)
CMOS Analog Design Using All-Region MOSFET
Modeling
12
Regions of operation of the MOSFET:
Inversion (p-substrate)
G
QG
+ + + + + + + + +
VGB
Qo
+
- -- - ---Q - -- -- -- - - - - - +
+
C
VGB  VFB
QC  0
s   F
+
electrons
surface!
approach the
B
CMOS Analog Design Using All-Region MOSFET
Modeling
13
Inversion for p-type substrate
Volume charge density inside the semiconductor:
  q( p0e  n0e  n0  p0 )
u
u
Depletion of holes prevails over electron charge when
p0 e
t
u
 n0e or, equivalently
p0
  ln( )
2
n0
u
mass-action
law
t
p02
p0
 ln( 2 )  t ln( )  F
2
ni
ni
For  >F the concentration of minority carriers (n)
becomes higher than that of majority carriers (p); the
semiconductor operates in the inversion region
CMOS Analog Design Using All-Region MOSFET
Modeling
14
Small-signal equivalent circuit of the
MOS capacitor

dQG
dQC
 
C gb

dVG
dVG
 
Cgb
dQC
1
 
C gb


dQ
d
1
d s  C  s 
Cox
dQC Cox
1
1
1

Cc Cox
Cc   dQC ds
Cc  
d  QB  QI 
ds
 Cb  Ci
CMOS Analog Design Using All-Region MOSFET
Modeling
15
Main approximation for compact MOS
modeling: the charge-sheet model
Minority carriers occupy a zero-thickness layer at the Si-SiO2
interface, where   s
dQI
QI
Ci  

d s
t
s /t
QI  e
Charge-sheet + depletion approximation for the bulk charge gives
QB  qN A xd   2q s N A s  t 
2q s N A
 Cox
Cb 

2 s  t 2 s  t
  2q s N A / Cox
is the body-effect coefficient
CMOS Analog Design Using All-Region MOSFET
Modeling
16
The three-terminal MOS structure
VC
VG
p
n+
Carrier concentrations in Si
substrate follow Boltzmann’s
law:
n, p  exp(-Energy/kT)
The origin of potential  is taken deep in the bulk
p  p0 e

q
kT
 p0e u ;
n  n0e
q ( VC )
kT
 n0eu uC
electrons are no longer in equilibrium with holes due to the bias of
the source-bulk junction VC
pn  ni2e uC  ni2e VC / t
CMOS Analog Design Using All-Region MOSFET
Modeling
17
Small-signal equivalent circuit of the 3terminal MOS device
dQI  Cb  Cox  Ci

dVC Ci  Cb  Cox

1
1
dQI 
   dVC
 Cox  Cb Ci 
Approximations:
1) depletion capacitance per unit area is constant along the
channel and is calculated neglecting inversion charge
2) Charge sheet model
Ci  QI / t
CMOS Analog Design Using All-Region MOSFET
Modeling
18
The linearization surface potential sa
Determination of sa  s Q 0
VG
I
Potential balance
VG  VFB
+
QB
 sa 
 sa   sa  t

Cox
sa  t  VG  VFB  t 
2
4

Cox
QI  0

2
_
Ci  0
Cb
s  sa
_
QB
+
dsa
Cox
1


dVG Cox  Cb n
CMOS Analog Design Using All-Region MOSFET
Modeling
19
Example: slope factor
For tox = 5 nm and 20 nm determine the minimum doping NA for
which the slope factor n < 1.25 at sa = 2F.
Answer: For sa=2F
2q s N A
2q s N A
Cb
n=1+
 1
 1
Cox
 sa
 2F
2Cox
2Cox
Thus, for n=1.25
 0.25 2F 4Cox2
2
NA=
2q s
where F is a weak (logarithmic) function of NA. Using 2F = 0.8 V
for the first calculation, we obtain after two iterations that NA>
4.9x1015 atoms/cm3 for tox=5nm, and NA > 2.3·1014 atoms/cm3 for
tox=20 nm.
CMOS Analog Design Using All-Region MOSFET
Modeling
20
The Unified Charge Control Model
(UCCM) - 1

1
1

dQI 
   dVC


 Cox  Cb Ci 
Approximations:
1) depletion capacitance per unit area is constant along the
channel and is calculated neglecting inversion charge
2) Charge sheet model
Ci  QI / t
CMOS Analog Design Using All-Region MOSFET
Modeling
21
The Unified Charge Control Model
(UCCM) - 2

1
1
dQI 
   dVC
 Cox  Cb Ci 
Ci  QI / t
 1
t 
dQI 
   dVC
 nCox QI 
Cb
 n VGB 
where n  1 

Cox
Integrating from an arbitrary channel potential VC to a reference
potential VP yields the unified charge control model (UCCM)
 QIP
 QI  
  QI
VP  VC  t 
 ln 

 t
 
 QIP
 nCox
CMOS Analog Design Using All-Region MOSFET
Modeling
  QI V
QIP
C VP
22
The “regional” strong and weak
inversion approximations
 QIP
 QI
  QI
VP  VC  t 
 ln 
 t

 QIP
 nCox
VP  VC
t



t
VP  VC
weak inversion
strong inversion
QI  nCox VP  VC 
  QI
VP  VC  t ln 

  QIP
 
  1
 
or, equivalently
e
QI  QIP
VP VC t
CMOS Analog Design Using All-Region MOSFET
Modeling
t
23
Example : approximate UCCM
(a) Calculate the value of the inversion charge density, normalized
 t , for which the value of the voltage VP-VS
to nCox
calculated using the SI approximation differs from that
calculated using UCCM by 10 %; (b) Same using the WI
approximation ; (c) comment on ‘moderate’ inversion (MI)
qI  (VP  VC ) / t
Answer: a)
SI approximation error of less than 10 % for q’I > 20
b) WI approximation
qI  e
VP VC t
t
WI approximation error of less than 10 % for q’I < 0.22.
(c) MI region : SI and WI approximations give errors greater than
10 % for the control voltage VP-VS. The inversion charge
density variation from the lower to the upper limit of the MI
region is approximately two orders of magnitude (20/0.22).
CMOS Analog Design Using All-Region MOSFET
Modeling
24
The pinch-off charge density
The channel charge density corresponding to the effective
channel capacitance times the thermal voltage, or thermal
charge, defines pinch-off
  (Cox
  Cb )t  nCox
 t
QIP
The name pinch-off is retained herein for historical reasons
and means the channel potential corresponding to a small
(but well-defined) amount of carriers in the channel.
CMOS Analog Design Using All-Region MOSFET
Modeling
25
The pinch-off voltage VP
The channel-to-substrate voltage (VC) for which the channel
charge density equals is called the pinch-off voltage VP.
in weak
inversion
  2 V /
  2 V /
QI  Cbt e sa F C  t  Cox (n  1)t e sa F C  t
UCCM is
asymptotically correct
in weak inversion if

 n 
VP  sa  2F  t 1  ln 

n

1



VP  sa  2F
CMOS Analog Design Using All-Region MOSFET
Modeling
26
Threshold voltage
Equilibrium threshold voltage VT0, for VC=0:
  nCox
 t
Gate voltage for which QI  QIP
or
Gate voltage for which VP=0
VP  sa  2F
Recalling that
it follows that
VG  VFB  sa   Cox sa  t
VT 0  VFB  2F   2F
CMOS Analog Design Using All-Region MOSFET
Modeling
27
Example: threshold voltage
+
Estimate VT0 for an n-channel transistor with n polysilicon gate,
NA=1017 atoms/cm3 and tox=5 nm.
Answer: The flat-band voltage (slide 10) is -0.98 V; F=0.419; C’ox=
690 nF/cm2. The body-effect factor is   2q s N A / Cox  0.264 V
VT 0  VFB  2F   2F =  0.98  0.838  0.264 0.838= 0.1V
For this low value of the threshold voltage, the off-current (for VGS=0)
is too high for digital circuits.
Solution to control the magnitude of the threshold voltage without an
exaggerated increase in the slope factor
a non-uniform
high-low channel doping.
CMOS Analog Design Using All-Region MOSFET
Modeling
28
Pinch-off voltage vs. gate voltage
4.0
4.00E+00
2
3.0
2.0
1.5
1.5
2.0
2.00E+00
1
1.0
1.0
1.00E+00
VP
0
0.00E+00
Cox
dVP dsa
1





dVG dVG Cb  Cox n
-1.0
-1.00E+00
0.00E+00
0
1.00E+00
2.00E+00
3.00E+00
4.00E+00
5.00E+00
slope factor
pinch-off voltage
3.00E+00
0.5
0.5
0
0
6.00E+00
1.0
2.0
3.0
4.0
5.0 VG (V)
VT0 (equilibrium threshold voltage)
Useful approximation: VP 
VGB  VT0
n
CMOS Analog Design Using All-Region MOSFET
Modeling
29
The MOS transistor
W xi
xi
0 0
0
I D     J n dxdz  W  J n dx
CMOS Analog Design Using All-Region MOSFET
Modeling
30
‘Exact’ I-V model of the MOSFET (1)
 d 
dn
J n  qn  n  
  qDn
dy
 dy 
drift
n  n0 e
q ( VC )
kT
 n0e
u uC
Using the Einstein relationship
VS  VC  VD
diffusion
dn n  d dVC 
 


dy t  dy dy 
Dn  nt
 d dVC 
dVC
d
J n  qn  n
 qn  n 

  qn  n
dy
dy
 dy dy 
CMOS Analog Design Using All-Region MOSFET
Modeling
31
‘Exact’ I-V model of the MOSFET (2)
W xi
xi
I D     J n dxdz  W  J n dx
0 0
0
dVC
J n  qn  n
dy
dVC
I D  qW  nn
dx
dy
0
xi
xi
QI  q  ndx
0
I D  W  nQI
dVC
dy
Since the current is constant along the channel
ID  
nW VD
L
 QI dVC
L is the channel length
VS
CMOS Analog Design Using All-Region MOSFET
Modeling
32
Charge-sheet formula for the current
Ci  
dV C
+
QI
VG
t
dQI
_
d s
dQI  Ci  dVC  ds 
dQI
dVC  ds  t
QI
I D  I drift  I diff
  nWQI
CMOS Analog Design Using All-Region MOSFET
Modeling
J n  qn  n
dVC
dy
ds
dQI
 nW t
dy
dy
33
Charge control compact model (1)
VG
dQI
dVC
+
_
Ci
ds
dQI
I D   nWQI
 nW t
dy
dy
Cox
d s
_
Cb
  Cb )ds  nCox
 ds
dQI  (Cox
dQB
+
nW
dQI
 )
ID  
(QI  t nCox

nCox
dy
Integrating along the channel yields
ID 
 2  QID
 2
nW  QIS

L 

2nCox

  QID
 
 t  QIS

CMOS Analog Design Using All-Region MOSFET
Modeling
34
Charge control compact model (2)
drift +
ID 
 2  QID
 2
 nW  QIS

L 

2nCox
diffusion


 
 Q  QID
  Q  QID
  QID
     nW  IS
 t   IS
 t  QIS
 nCox


2
nC
L


ox



“virtual” charge
 ds
dQI  nCox
  QID

 QIS
  s 0  sL 

I D   nW 
 nCoxt  

2
L



average
charge density
CMOS Analog Design Using All-Region MOSFET
Modeling
average
electric field
35
Charge control compact model (3)
To emphasize the symmetry of the rectangular geometry
MOSFET
ID  IF  IR
I F ( R)
2



Q
W
IS ( D )
 ( D) 
 n 
 t QIS

L
 2nCox

(compare with Ebers-Moll model of the BJT)
CMOS Analog Design Using All-Region MOSFET
Modeling
36
Drain current vs. gate-to-bulk voltage
CMOS Analog Design Using All-Region MOSFET
Modeling
37
Comparing UCCM and the surface potential
model with exact numerical solution of
Poisson equation
CMOS Analog Design Using All-Region MOSFET
Modeling
38
Modeling the bulk charge from
accumulation to inversion
  s  t (es / t  1)
Charge-sheet approximation QB   sgn(s )Cox
VG  VFB  s   QI  QB  / Cox
Potential balance
sa  s Q  0
I
VG  VFB  sa 2   2 sa  t e 
1 dQB
n  1
Cox ds
s sa
sa
t

1




sgn sa   1  e sa / t
Cb
 1
 1
Cox
2 sa  t e sa t  1
CMOS Analog Design Using All-Region MOSFET
Modeling
39
Modeling from accumulation to inversion:
Surface potential and pinch-off voltage (VP)
CMOS Analog Design Using All-Region MOSFET
Modeling
40
Transistor symmetry
1.
I D  I D VG ,VS ,VD 
VG
Voltages referenced to local substrate: VS
VG VGB
VS VSB
VD
VD VDB
B
2. Symmetry
I D VG ,V1,V2   I D VG ,V2 ,V1 
ID
B
V1
ID V2
VG
CMOS Analog Design Using All-Region MOSFET
Modeling
41
Normalization
3. For a long-channel MOSFET
W
I D  I F  I R  I S i f  ir   I SQ  f VG ,VS   f VG ,VD  
L
I F  R   I S  qIS  D  2  2qIS  D  
qIS  D   QIS  D  /  nCox t 
D
ID
i f r   I F  R / I S
t2 W
W
I S  Cox n
 I SQ
2 L
L
IF  IR
G
IS and ISQ are the normalization (specific)
current and the “sheet” normalization
current, slightly dependent on bias.
CMOS Analog Design Using All-Region MOSFET
Modeling
B
S
42
Forward and reverse currents
Long-channel MOSFET
I D  I F  I R  I (VG ,VS )  I (VG ,VD )
IF: forward current
IR: reverse current
IR=
IF=
CMOS Analog Design Using All-Region MOSFET
Modeling
43
Specific current
The specific (normalization) current
I S  Cox n
t2 W
W
 I SQ
2 L
L
ISQ : process parameter slightly dependent on VG and T
ISQ 25 nA (p-channel)
ISQ 75 nA (n-channel)
in 0.35 m CMOS
CMOS Analog Design Using All-Region MOSFET
Modeling
44
Pinch-off voltage and slope factor (1)
UCCM
 ( D )  1  ln qIS
 ( D ) 
VP  VS ( D )  t  qIS
qIS ( D )  1  i f ( r )  1
&
2
2





VP   VG  VT 0   2F      2F
2
2




Linearization:
VP
Slope =1
Slope =1/n
VG  VG 0
n VG 0 

n VG 0   1 
2 VP 0  2F
VP  VP 0 
In particular:
VP0
VP 
VT0
VG0
VG
VG  VT 0
n VT 0 
n VT 0   1 
CMOS Analog Design Using All-Region MOSFET
Modeling

2 2F
45
Pinch-off voltage and slope factor (2)
Determination of the pinch-off voltage and the slope factor as
functions of VG. NMOS transistor W=20 m, L=2 m, 0.18 m
CMOS technology.
CMOS Analog Design Using All-Region MOSFET
Modeling
46
The I-V relationship (1)
VP  VS  t  1  i f  2  ln



1  i f 1 

1,00E-03
10-3
VD = VG
ID (A)
VD
1,00E-04
ID
VS = 0 V
1,00E-05
0.5
1.0
10-6
1,00E-06
1.5
VG
2.0
VS
1,00E-07
2.5
3.0
1,00E-08
-9
1,00E-09
10
0,00E+00
0
5,00E-01
1,00E+00
1
1,50E+00
2,00E+00
2
2,50E+00
3,00E+00
3
3,50E+00
4,00E+00
4,50E+00
4 VG (V)
Common-source characteristics
CMOS Analog Design Using All-Region MOSFET
Modeling
47
The I-V relationship (2)
VP  VS  t  1  i f  2  ln

10-3
ID (A)


1  i f (r ) 1 

VD = VG
VG = 4.8 V
VD
ID
10-6
VG
0.8 V
10-9
VS
0
1
2
3
VS (V)
Common-gate characteristics VG=0.8, 1.2, 1.6,
2.0, 2.4, 3.0, 3.6, 4.2, and 4.8 V
CMOS Analog Design Using All-Region MOSFET
Modeling
48
Weak inversion model
Weak inversion
if(r)<1
VG  VT 0
 VS ( D )  t  1  i f ( r )  2  ln

n
-1
 VG VT 0


V
S  / t

n


I D  I 0e
1  eVDS / t 


I0   n


1  i f (r )  1 

if(r)/2
W
  t2e1  2 I S e1
nCox
L
CMOS Analog Design Using All-Region MOSFET
Modeling
49
Strong inversion model (1)
VG  VT 0
 VS ( D )  t  1  i f ( r )  2  ln

n
Strong inversion
if(r)>>1


1  i f (r )  1 

VG  VT 0
 VS ( D )  t i f ( r )  t I F ( R ) I S
n

I D  I F  I R   nCox
Moderate inversion
1<if(r) <100
W 
2
2
V

V

nV

V

V

nV
 G T0
 G T0
S
D

2nL 
Both sqrt(.) and ln(.) terms are important
CMOS Analog Design Using All-Region MOSFET
Modeling
50
Strong inversion model (2)
ID
VDS
VG
ID/IF
1
VDSsat=VP=(VG-VT0)/n
VDS
Transistor output characteristic
CMOS Analog Design Using All-Region MOSFET
Modeling
51
Strong inversion model (3)
ID 
ID
Cox W
2n L
VG  VT 0 
ID 
ID
Cox W
2n L
VG  VT 0  nVS 
SCE, , n,
“model”
VT0
VDD
VG  VT 0 
VG
n
VS
VDD
ID
ID
VG
VG
VS
CMOS Analog Design Using All-Region MOSFET
Modeling
52
Universal output characteristics
 1  i f 1 
 qIS 

  ln 
 qIS  qID
  1  i f  1  ir  ln 

 
t
 qID
 1  ir  1 
VDS
(o): measured
(—): model
(a) if= 4.5x 10-2 (VG=0.7 V); (b) if= 65(VG= 1.2 V); (c) if= 9.5x102 (VG= 2.0 V); (d) if=
3.1x 103 (VG= 2.8 V); (e) if= 6.8x 103 (VG= 3.6 V); (f) if= 1.2x 104 (VG= 4.4 V).
CMOS Analog Design Using All-Region MOSFET
Modeling
53
Saturation voltage
 / qIS  
Saturation voltage (VDSsat) – VDS such that qID
VDSsat  t ln 1    1   



1  i f 1 

1  
CMOS Analog Design Using All-Region MOSFET
Modeling
is the saturation level
54
Transconductances - 1
Transconductances
I D  g mg VG  g ms VS  g md VD  g mb VB
g mg  g ms  g md  g mb  0
g mg 
Calculation of gms
  IF  IR 
 IF
W
g ms  

   QIS
 VS
 VS
L
g md
g mg  I S
UCCM
(i f  ir )
VG
I D
I
I
I
, g ms   D , g md  D , g mb  D
VG
VS
VD
VB
i f
VG
W

   QID
L

i f
nVS
ir
i
 r
VG
nVD
Pao-Sah ID (UCCM)
g mg
g mg
g ms  g md

n
g
in saturation
 ms
n
CMOS Analog Design Using All-Region MOSFET
Modeling
55
Transconductances - 2
VDD
ID
VG
VS
Source transconductance VG= 0.8, 1.2, 1.6, 2.0, 2.4, 3.0, 3.6,
4.2, and 4.8 V
(W=L=25 m, tox=280 Å)
CMOS Analog Design Using All-Region MOSFET
Modeling
56
Transconductances - 3
VDD
ID
VG
VS
Gate transconductance VS= 0, 0.5, 1.0,1.5, 2.0, 2.5, and 3.0 V .
W=L=25 m, tox=280 Å
CMOS Analog Design Using All-Region MOSFET
Modeling
57
The transconductance-to-current ratio - 1
Transconductance
-to-current ratio
g ms ( d )t
I F (R)

1
2
1  i f (r )  1

WI (if <1)
2
i f (r )
SI (if >>1)
102
gms/IF
W=25 m
101
tox = 28 nm (IS = 26 nA)
L=25 m, tox= 280 Å
tox = 5.5 nm (IS = 111 nA)
L=20 m, tox= 55 Å
Seqüência1
Seqüência2
model
Seqüência3
100
10-4
1,00E-03
10-2
1,00E-01
100
102
if
104
CMOS Analog Design Using All-Region MOSFET
Modeling
58
The transconductance-to-current ratio - 2
Transconductance
-to-current ratio
g ms ( d )t

I F (R)
1
2
1  i f (r )  1

WI (if <1)
2
i f (r )
SI (if >>1)
1,00E+02
2
10
gms/IF
V
W=L=25 m, tox= 280 Å
= 1.0 V (IS = 33 nA)
Seqüência1
GB
1,00E+01
1
10
VGB = 2.0 V (IS = 26 nA)
Seqüência2
VGB = 3.0 V (IS = 24 nA)
Seqüência3
model
Seqüência4
1,00E+00
0
1,00E-04
-4
10
10
1,00E-03
1,00E-02
-2
10
1,00E-01
1,00E+00
0
10
1,00E+01
1,00E+02
2
10
if
1,00E+03
1,00E+04
4
10
CMOS Analog Design Using All-Region MOSFET
Modeling
59
The transconductance-to-current ratio - 3
g ms ( d )t
Transconductance
-to-current ratio
101002
I F (R)

1
2
1  i f (r )  1

WI (if <1)
2
i f (r )
SI (if >>1)
gms/IF
10101
L = 25 m (IS = 26 nA)
W=25 m, tox= 280 Å
Seqüência1
L = 2.5 m (IS = 260 nA)
Seqüência2
model
Seqüência3
0
1
101,00E-04
10-4
1,00E-03
1,00E-02
10-2
1,00E-01
1,00E+00
100
1,00E+01
1,00E+02
102
1,00E+03
if
1,00E+04
104
1,00E+05
CMOS Analog Design Using All-Region MOSFET
Modeling
60
The low-frequency small-signal model
G
g md v d
id
S
g mb vb
D
g ms v s
g mg v g
B
CMOS Analog Design Using All-Region MOSFET
Modeling
61
Quasi-static charge-conserving model
 The current entering each terminal of the transistor is split into
a transport component (IT) and a capacitive charging term.
dQD
I D (t )  IT (t ) 
dt
W VD t 
I T (t )  n
 QI (VC )dVC
L VS t 
 Quasi-static approximation: To calculate the stored charges
we suppose that the charge stored in the transistor depends
only on the instantaneous terminal voltages
Neglecting leakage currents
L
QG  W  QG dy
0
L
QB  W  QB dy
0
dQG
I G (t ) 
dt
dQB
I B (t ) 
dt
CMOS Analog Design Using All-Region MOSFET
Modeling
62
Ward-Dutton partition of the channel
charge
L
y
QS  W  (1  )QI dy
L
0
y
QD  W  QI dy
0 L
dQS
I S (t )  IT (t ) 
dt
dQD
I D (t )  IT (t ) 
dt
L
dQD dQS dQI
I D (t )  I S (t ) 


dt
dt
dt
As expected
L
QI  W  QI dy is the total inversion charge stored
0
in the channel
CMOS Analog Design Using All-Region MOSFET
Modeling
63
Calculation of stored charge - 1
I D  I drift  I diff 
ds
dQI
  nWQI
  nW t
dy
dy
 ds
dQI  nCox
nW
 t  dQI
dy   '  QI  nCox
nCox I D
It is convenient to define
dy  
nW
'
nCox
ID
 t
QIt  QI  nCox
QIt dQIt
CMOS Analog Design Using All-Region MOSFET
Modeling
64
Calculation of stored charge - 2
L
QI  W  QI dy
0
dy  
nW
'
nCox
ID
QI  
QIt dQIt
 ( D )  nCox
 t
QF ( R )  QIS
Using
or
ID 





Q

nC

Q
dQ
 
ox t  It
It 
  QR It
I D nCox

QI  
nt (W / L)
 2nCox t 
nW 2 QF
2
nW 2  QR3  QF3

 ID 
nCox
QF2  QR2 


3
QR2  QF2 
 t
 nCox

2

we find that
 2 QF2  QF QR  QR2


 nCoxt 
Q I  WL 


3
Q

Q
F
R


2  QIS
 QID
  QID
2 )  nCox
 t (QIS
  QID
 )
2 3(QIS
QI  WL
  QID
  2nCox
 t
QIS
CMOS Analog Design Using All-Region MOSFET
Modeling
In weak inversion
QI  WL
  QID
 )
(QIS
2
In strong inversion &
saturation

QI   2 3WLQIS
65
Total inversion, source and drain charges
Channel linearity
coefficient
  nCox
 t
QR QID


  nCox
 t
QF QIS
=1 in WI
0 in SI sat
=1 in SI for VDS=0
 2 1    2

  nCox
 t )  nCox
 t 
QI  WL 
(QIS
 3 1 

 6  12  8 2  4 3

n



QS  WL 
(QIS  nCoxt )  Coxt 
2
2


15 1   
 4  8  12 2  6 3

n
  nCox
 t )  Cox
 t 
QD  WL 
(QIS
2
2


15 1   
CMOS Analog Design Using All-Region MOSFET
Modeling
66
Capacitive coefficients - 1
Using the quasi-static approximation
Q j dVG Q j dVS Q j dVD Q j dVB




dt
VG dt
VS dt VD dt
VB dt
dQ j
Defining
 Qj
C jk  
 Vk
jk
0
 Qj
C jj 
Vj
0
 dQ G / dt   C gg  C gs C gd C gb   dVG / dt 


 


/
dt
dQ
dV
/
dt

C
C
C

C
sg
ss
sd
sb
 S
 S


 dQ / dt   C dg C ds
C dd C db   dVD / dt 
D


 
 dV / dt 
 dQ / dt   C


 B
  bg C bs C bd C bb   B
CMOS Analog Design Using All-Region MOSFET
Modeling
67
Capacitive coefficients - 2
 The 16 capacitive coefficients are not linearly
independent
Assume
VG  t   VS  t   VD  t   VB t   V (t )
Under equal terminal voltage variations, the charging
currents are zero. For the gate charging current, e.g.,
we have
d QG
dV
 (Cgg  Cgs  Cgd  Cgb )
0
dt
dt
Cgg  Cgs  Cgd  Cgb
Similarly, for S, D, and B nodes
Cdd  Cdg  Cds  Cdb
Css  Csg  Csd  Csb
Cbb  Cbg  Cbs  Cbd
CMOS Analog Design Using All-Region MOSFET
Modeling
68
Capacitive coefficients - 3
Assume that
dVS dVD dVB


0
dt
dt
dt
d QG
dVG d Q S
dV
 Cgg
,
 Csg G ,
dt
dt
dt
dt
dQD
dVG d Q B
dV
 Cdg
,
 Cbg G
dt
dt
dt
dt
The sum of all the charging currents is
d QG d Q S d Q D d Q B
dVG



 (Cgg  Csg  Cdg  Cbg )
dt
dt
dt
dt
dt
Charge conservation,
d(QS+QD+QB+QG)/dt=0
Cgg  Csg  Cdg  Cbg
CMOS Analog Design Using All-Region MOSFET
Modeling
69
Capacitive coefficients - 4
 Linear relationships between capacitive
coefficients
Cgg  Cgs  Cgd  Cgb  Csg  Cdg  Cbg
Css  Csg  Csd  Csb  C gs  Cds  Cbs
Cdd  Cdg  Cds  Cdb  Cgd  Csd  Cbd
Cbb  Cbg  Cbs  Cbd  Cgb  Csb  Cdb
 Only nine out of the sixteen capacitive
coefficients are linearly independent
CMOS Analog Design Using All-Region MOSFET
Modeling
70
A complete set of 9 capacitive coefficients
for the MOSFET
2
1  2 qIS
Cgs  Cox
2
3
1  1  qIS
Cgd
2
2
 2 qID

 Cox
2
3
1


  1  qID
Csd
Cbs ( d )  (n  1)C gs ( d )
Cgb  Cgb
n 1

(Cox  Cgs  Cgd )
n
4
  3 2   3 qID
  nCox
3
15
1  1  qID
4
1  3   2 qIS
Cds   nCox
3
15
1  1  qIS
Cdg  Cgd  Cm  (Csd  Cds ) / n
CMOS Analog Design Using All-Region MOSFET
Modeling
71
Simplified small-signal MOSFET model
G
g md vDB  Csd
Cgs
dvDB
dt
Cg
d
S
Cbs
dv
g mg vGB  Cm GB
dt
Cbd
g ms vSB  Cds
B
D
Cgb
dvSB
dt
CMOS Analog Design Using All-Region MOSFET
Modeling
72
The five capacitances of the simplified
model
Intrinsic capacitances simulated from (___) the charge-based and (o) from
the S- model (NMOS transistor, tox= 250Å, NA=2x1016 cm-3, and VT0=0.7V.
CMOS Analog Design Using All-Region MOSFET
Modeling
73
Capacitances of extrinsic transistor - 1
CMOS Analog Design Using All-Region MOSFET
Modeling
74
Capacitances of extrinsic transistor - 2
CMOS Analog Design Using All-Region MOSFET
Modeling
75
Non-quasi-static (NQS) small-signal
model
Channel segmentation: representation of the MOSFET
as a series combination of short transistors
CMOS Analog Design Using All-Region MOSFET
Modeling
76
Simplified high-frequency MOSFET model
G
C gs
1  j  1   2 
g md vd
1  j 1
S
1  j  1   3 
D
g mg vg
Cbs
1  j 1   2 
B
C gd
1  j 1
Cgb
1  j  1   4 
 Cgb
Cbd
g ms vs
1  j 1
CMOS Analog Design Using All-Region MOSFET
Modeling
1  j 1   3 
77
Time constants of the NQS MOSFET
model

4 1  3   2
1 
1  qIS 15 1   3


1 2  8  5
2 
1  qIS 15 (1   )2 (1  2 )
2
L2
t

1 5  8  2 2
3 
1  qIS 15 (1   ) 2(2   )
CMOS Analog Design Using All-Region MOSFET
Modeling
78
Quasi-static small-signal model
1<<1
2(3)<<1
non-quasi-static model
reduces to the five-capacitor model
G
C gs
g md vDB
C gd
g mg vGB
S
Cbs
Cgb
D
g ms vSB
Cbd
B
CMOS Analog Design Using All-Region MOSFET
Modeling
79
Example: Small-signal parameters
Calculate ID, VDSsat and small-signal parameters of a saturated nchannel MOSFET in 0.35 m technology at if = 3 with
VSB= 0. W=10 m, L=1 m, tox=7 nm, n=1.2, n=400 cm2/V-s at 300 K.
Answer:
Cox =493 nF/cm2 and I SH  nCox nt2 / 2= 80 nA.
gmd = 0, Cgd = 0 and Cbd = 0 since the transistor is saturated.
I D  I F  (W / L) I SH i f  10  80  3  2.4 μA


VDSsat  t 3  1  i f  26(3  2)  130 mV

QIS
qIS  
 1 i f 1  1 3 1  1
 t
nCox
g mg  (2 I S / nt )


1 i f 1
g mg 
2  10  80 nA
 51 μA/V
1.2  0.026 V
CMOS Analog Design Using All-Region MOSFET
Modeling
80
Example: Small-signal parameters (continued)
2
1  2 qIS
Cgs  Cox
2
3
1  1  qIS
C gb
qID  1
1


 1
qIS  1 qIS
n 1

(Cox  C gs  Cgd )
n
=1/(1+1)=0.5
  49 fF
Cox  WLCox
2
11
1
Cgs  49
 14.5 fF
2
3 10.5 1  1
0.2
Cgb 
(49  14.5  0)  5.75 fF
1.2
CMOS Analog Design Using All-Region MOSFET
Modeling
81
Intrinsic transition frequency
fT 

g mg
2 C gs  C gb



g ms
2 n C gs  C gb

t
fT 
2 1  i f 1
2
2 L


CMOS Analog Design Using All-Region MOSFET
Modeling
82
Example: Transition frequency
Determine the inversion level for which the transition
frequency of a minimum (nominal) length NMOS
transistor in the 0.35 m technology is 10 GHz at room
Answer:
Assuming that n=1.2 and n = 400 cm2/V-s at 300 K
it follows that

i f  1   L fT / nt
2

2
 1  21
Thus, operation in moderate inversion can be
considered for a design at 1 GHz, for example.
CMOS Analog Design Using All-Region MOSFET
Modeling
83
Main short-channel effects
 Mobility dependence on the electric field
 Channel length modulation
 Drain-induced barrier lowering
 Velocity saturation
CMOS Analog Design Using All-Region MOSFET
Modeling
84
Mobility dependence on the electric field
Inclusion of mobility variations in compact modeling: the constant
mobility is substituted with an effective mobility, which depends
on the applied voltages.
eff 
0
 QBS
  QIS
 QBD
  QID
 
1   


2

2

s
s


0, the low-field mobility and , the scattering constant, are fitting
parameters
Another simplification: the effective transversal field is assumed
constant along the channel and equal to its value at pinch-off.
eff 
CMOS Analog Design Using All-Region MOSFET
Modeling
0
1  

QBa
s
85
Channel length modulation
The dependence of the effective channel length on the drain-to-source
voltage is referred to as the channel length modulation (CLM).
D
S
ID
 VDS  VDSsat 
L  LC ln 1 

V


p
VDSsat
VDS
L
0
  2
qIS  qID

1
  qID
 
ID  IS
qIS

L 1    qIS  qID
 
1
L
CMOS Analog Design Using All-Region MOSFET
Modeling
Le
L
y
86
Drain-induced barrier lowering (DIBL)
 An increase in the drain voltage produces an increase in the
surface potential in the channel and, consequently, a reduction
in the potential barrier seen by the electrons at the source (
DIBL).
 The inclusion of the DIBL effect in MOSFET models is generally
through the threshold voltage.
VT  VT ,lc

 L 
6t ox
2bi  VBS   VDS exp   

d1
 4d 1 

VT  VT ,lc   bi  VSB   bi  VDB 
CMOS Analog Design Using All-Region MOSFET
Modeling
87
Velocity saturation effects - 1

s
1
F
FC

1
s
 s d S
vsat dy
dS
  F (longitudinal field)
dy
Allows analytical
integration for ID
v
vsat
vsat
s
s
 FC
FC
CMOS Analog Design Using All-Region MOSFET
Modeling
F
88
Velocity saturation effects - 2
dQI  nCox ds
I D   WQI
dVC
dy
s
s

1
nCox vsat
 sWQI
dQI
dy
dQI
ID 
dQI dy
1
1
 FC dy
nCox
t  dVC
dQI  1
 

dy  nCox QI  dy
 1
t 





nC
Q
I 
 ox
  QIS
 
  QID


  QIS
 
ID  
 QIP   QID


Q  QIS
 L
nCox
2


1  ID

LFC nCox
 sW
1
CMOS Analog Design Using All-Region MOSFET
Modeling
89
Velocity saturation effects - 3
Normalized current vs.
normalized charge densities
 t 
qI  QI /  nCox
t2
W

I S   s nCox
L
2

iD  I D / I S
  2
qIS  qID

iD 
qIS  qID 

 
1    qIS  qID
st / L 


vsat
Normalization (specific) current
short-channel parameter : ratio of diffusion-related
velocity to saturation velocity
CMOS Analog Design Using All-Region MOSFET
Modeling
90
Velocity saturation effects - 4
Saturation: The minimum amount of electron charge flowing at
the saturation velocity, required to sustain the current is

QIDSAT
  I D / Wvsat
2

qIS  1  qIDsat  1  qIDsat

S
D
ID
QI
QIS

QID
VDS

QIDSAT
0
CMOS Analog Design Using All-Region MOSFET
Modeling
91
Velocity saturation effects - 5
2
qIS  1  qIDsat  1  qIDsat
QIDSAT QIS

1
 st L
Short channel
Long channel
strong
inversion
weak
inversion
vsat
10-2
100
102
104
 QIS nCox  t
CMOS Analog Design Using All-Region MOSFET
Modeling
92
Small dimension effects on charges
and capacitances
I D   WQI
dVC
dy

1
s
s
nCox vsat
dQI
dy
t  dVC
dQI  1
 

dy  nCox QI  dy
sW 
ID


dy  
 QI  nCoxt 
 ID 
nCox
Wvsat
CMOS Analog Design Using All-Region MOSFET
Modeling

 dQI

93
Virtual charge formalism - 1
Virtual inversion charge density
 t 
QV  QI  nCox
ID
Wvsat
inversion +pinch off -saturation charge
densities
Along the channel
sW 
dQV  dQI
ID


dy  
 QI  nCoxt 
 ID 
nCox
Wvsat

sW

QV dQV
 dQI  
 ID
nCox

CMOS Analog Design Using All-Region MOSFET
Modeling
94
Virtual charge formalism -2
dQV
ds
ID  
QV
   sWQV

nCox
dy
dy
sW
The drift of the virtual charge produces the
same current as the actual movement of
the real charge, which includes drift,
diffusion and velocity saturation
CMOS Analog Design Using All-Region
All Region MOSFET
Modeling
95
Channel linearity coefficient  with vsat
dQV
QV
The integration of I D  

nCox
dy
 sW
from
source to drain results in
ID 
where
2  QVD
2
 sW QVS
 L
Cox
2n

 I D0 1   2

  nCox
  t  I D Wvsat

QID
QVD



  nCox
  t  I D Wvsat
QVS
QIS
CMOS Analog Design Using All-Region MOSFET
Modeling
96
Stored charges including vsat
The stored charge

QI  W 0LL QI dy  W LQIDsat
is calculated changing the integration variable
from y to QV
dy  
 sW
 ID
nCox
QV dQV
resulting in
 2 1    2
 LI D
  nCox
 t 
QVS
Q I  W ( L  L) 
 3 1 
 vsat
CMOS Analog Design Using All-Region MOSFET
Modeling
97
Source and drain charges including vsat
CMOS Analog Design Using All-Region MOSFET
Modeling
98
Capacitive coefficients including vsat - 1
Le g ms 1 
2
1  2 qIS

Cgs  WLeCox

3
(1   )2 1  qIS 3nvsat 1  2
2
Le g md 1 
2
 2  2 qID

 WLeCox

3
(1   )2 1  qID 3nvsat 1  2
2
Cgd
2
Le gmg 1  
n 1 
 Cox  Cgso  Cgdo 

Cgb  Cbg 
2

n
3vsat 1 


2
2
2
2
3


7
1



g
q



4
1

3



1
L
L
e
IS
ms
W e
Cds   nCox

15
L 1 3 1  qIS 30 vsat L
1 3
2
3
2
qID
4
1 g md L e2  37 1 
L
e   3  
Csd   nCox W

3
15
L 1 3 1  qID 30 vsat L
1


 
Cbs ( d )   n  1 Cgs ( d )
2
Cdg  Cgd   Csd  Cds  / n
CMOS Analog Design Using All-Region MOSFET
Modeling
99
Capacitive coefficients including vsat - 1
Normalized capacitances versus drain-source voltage
CMOS Analog Design Using All-Region MOSFET
Modeling
100
Gate-to-bulk capacitance with and
without the effect of velocity saturation
CMOS Analog Design Using All-Region MOSFET
Modeling
101
Related documents