Download Geometry – Final Exam Proof Practice Name ___________________________ Statements:

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Geometry – Final Exam Proof Practice
1. Given: m  1 =
Prove:
x  5 , m  2 = x 11, and m  PQS = 100o
x  58
Statements:
a. m  1 =
Name ___________________________
Reasons:
x  5 , m  2 = x 11, and m  PQS = 100o
b. m  1 + m  2 = m  PQS
a. ___________________________________
b. ___________________________________
c.
x  5  x 11  100
c. ___________________________________
d.
2x 16  100
d. ___________________________________
e.
2x  116
e. ___________________________________
f.
x  58
f. ____________________________________
2. Given:
AB ≅ AC,  BAD ≅  CAD.
Prove: BD  CD
Statements:
a. AB  AC ,
Reasons:
BAD  CAD
b. AD  AD
a. ____________________________________
b. ____________________________________
c.
BAD  CAD
c. ___________________________________
d.
BD  CD
d. ___________________________________
3. Given: SV  TU , SV || TU
Prove: VX  XT
Statements:
Reasons:
a.
SV  TU SV || TU
a. ____________________________________
b.
 1   2,  3   4
b. ___________________________________
c.
SVX  UTX
c. ____________________________________
d.
VX  XT
d. ____________________________________
4. Given: a || b. Prove: The alternate interior angles theorem (by showing
Statements:
a. a || b
 1 ≅  3)
Reasons:
a. ____________________________________
b.
1 ≅ 2
b. ____________________________________
c.
2 ≅ 3
c. ____________________________________
d.
1 ≅ 3
d. ____________________________________
5. Give a reason for each step
a. 3( x  3)  5  x  10
a. Given
b.
3x  9  5  x  10
b. ____________________________________
c.
3x  4  x  10
c. ____________________________________
d.
2x  4  10
d. ____________________________________
e.
2x  6
e. ____________________________________
f.
x3
f. ____________________________________
6. Given:
Statements
Reasons
Statements
Reasons
Prove: AC  EC
7. Given: QR || TS , QS || TR
Prove: QS  TR
Related documents