Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
MM-150 SURVEY OF MATHEMATICS – Jody Harris Unit 6 Geometry Copyright © 2009 Pearson Education, Inc. Slide 9 - 1 Basic Terms Copyright © 2009 Pearson Education, Inc. Slide 9 - 2 Angles An angle is the union of two rays with a common endpoint; denoted The vertex is the point common to both rays. The sides are the rays that make the angle. There are several ways to name an angle: Copyright © 2009 Pearson Education, Inc. Slide 9 - 3 Angles The measure of an angle is the amount of rotation from its initial to its terminal side. Angles are classified by their degree measurement. Right Angle is 90o o Acute Angle is less than 90 Obtuse Angle is greater than 90o but less than 180o o Straight Angle is 180 Copyright © 2009 Pearson Education, Inc. Slide 9 - 4 Types of Angles ____ Straight Angle ____ Right Angle ____ Obtuse Angle ____ Acute Angle Copyright © 2009 Pearson Education, Inc. Slide 9 - 5 Types of Angles Adjacent Angles - angles that have a common vertex and a common side but no common interior points. Complementary Angles - two angles whose sum of their measures is 90 degrees. Supplementary Angles - two angles whose sum of their measures is 180 degrees. Copyright © 2009 Pearson Education, Inc. Slide 9 - 6 Example If ABC and CBD are supplementary and the measure of ABC is 4 times larger than CBD, determine the measure of each angle. C A Copyright © 2009 Pearson Education, Inc. B D Slide 9 - 7 Example If ABC and CBD are supplementary and the measure of ABC is 4 times larger than CBD, determine the measure of each angle. ABC + CBD = 180 C A Copyright © 2009 Pearson Education, Inc. B D Slide 9 - 8 Example If ABC and CBD are supplementary and the measure of ABC is 4 times larger than CBD, determine the measure of each angle. ABC + CBD = 180 C x A Copyright © 2009 Pearson Education, Inc. B D Slide 9 - 9 Example If ABC and CBD are supplementary and the measure of ABC is 4 times larger than CBD, determine the measure of each angle. ABC + CBD = 180 C 4x x A Copyright © 2009 Pearson Education, Inc. B D Slide 9 - 10 Example If ABC and CBD are supplementary and the measure of ABC is 4 times larger than CBD, determine the measure of each angle. ABC + CBD = 180 C 4x x A Copyright © 2009 Pearson Education, Inc. B D Slide 9 - 11 Example If ABC and CBD are supplementary and the measure of ABC is 4 times larger than CBD, determine the measure of each angle. ABC + CBD = 180 4x + x = 180 C 4x x A Copyright © 2009 Pearson Education, Inc. B D Slide 9 - 12 Example If ABC and CBD are supplementary and the measure of ABC is 4 times larger than CBD, determine the measure of each angle. ABC + CBD = 180 4x + x = 180 5x = 180 Copyright © 2009 Pearson Education, Inc. C 4x x A B D Slide 9 - 13 Example If ABC and CBD are supplementary and the measure of ABC is 4 times larger than CBD, determine the measure of each angle. ABC + CBD = 180 4x + x = 180 5x = 180 x = 36 Copyright © 2009 Pearson Education, Inc. C 4x x A B D Slide 9 - 14 Example If ABC and CBD are supplementary and the measure of ABC is 4 times larger than CBD, determine the measure of each angle. ABC + CBD = 180 4x + x = 180 5x = 180 x = 36 C 4x x A B D ABC = 4x = 4(36) = 144 Copyright © 2009 Pearson Education, Inc. Slide 9 - 15 Example Find x. Assume that angle 1 and angle 2 are complementary angles. Copyright © 2009 Pearson Education, Inc. Slide 9 - 16 Example Find x. Assume that angle 1 and angle 2 are complementary angles. x + 5x + 3 = 90 Copyright © 2009 Pearson Education, Inc. Slide 9 - 17 Example Find x. Assume that angle 1 and angle 2 are complementary angles. x + 5x + 3 = 90 6x + 3 = 90 Copyright © 2009 Pearson Education, Inc. Slide 9 - 18 Example Find x. Assume that angle 1 and angle 2 are complementary angles. x + 5x + 3 = 90 6x + 3 = 90 6x = 87 Copyright © 2009 Pearson Education, Inc. Slide 9 - 19 Example Find x. Assume that angle 1 and angle 2 are complementary angles. x + 5x + 3 = 90 6x + 3 = 90 6x = 87 x = 14.5 Copyright © 2009 Pearson Education, Inc. Slide 9 - 20 More definitions Vertical angles are the nonadjacent angles formed by two intersecting straight lines. Vertical angles have the same measure. A line that intersects two different lines, at two different points is called a transversal. Special angles are given to the angles formed by a transversal crossing two parallel lines. Copyright © 2009 Pearson Education, Inc. Slide 9 - 21 Special Names Interior angles on the Alternate interior angles opposite side of the transversal–have the same measure Exterior angles on Alternate the opposite sides of exterior the transversal–have angles the same measure Corresponding One interior and one exterior angle on the angles same side of the transversal–have the same measure Copyright © 2009 Pearson Education, Inc. 1 2 3 4 5 6 7 8 1 3 2 4 5 6 7 8 1 3 2 4 5 6 7 8 Slide 9 - 22 Types of Triangles Acute Triangle All angles are acute. Copyright © 2009 Pearson Education, Inc. Obtuse Triangle One angle is obtuse. Slide 9 - 23 Types of Triangles continued Right Triangle One angle is a right angle. Copyright © 2009 Pearson Education, Inc. Isosceles Triangle Two equal sides. Two equal angles. Slide 9 - 24 Types of Triangles continued Equilateral Triangle Three equal sides. Three equal angles (60º) each. Copyright © 2009 Pearson Education, Inc. Scalene Triangle No two sides are equal in length. Slide 9 - 25 Similar Figures Two polygons are similar if their corresponding angles have the same measure and the lengths of their corresponding sides are in proportion. 9 6 4 4 3 Copyright © 2009 Pearson Education, Inc. 6 6 4.5 Slide 9 - 26 Similar Figures Two polygons are similar if their corresponding angles have the same measure and the lengths of their corresponding sides are in proportion. 9 6 4 4 3 6 6 4.5 Put brown inside green Copyright © 2009 Pearson Education, Inc. Slide 9 - 27 Example Catherine Johnson wants to measure the height of a lighthouse. Catherine is 5 feet tall and determines that when her shadow is 12 feet long, the shadow of the lighthouse is 75 feet long. How tall is the lighthouse? x 5 75 Copyright © 2009 Pearson Education, Inc. 12 Slide 9 - 28 Quadrilaterals Quadrilaterals are four-sided polygons, the sum of whose interior angles is 360o. Quadrilaterals may be classified according to their characteristics. Copyright © 2009 Pearson Education, Inc. Slide 9 - 29 Classifications Trapezoid Two sides are parallel. Copyright © 2009 Pearson Education, Inc. Parallelogram Both pairs of opposite sides are parallel. Both pairs of opposite sides are equal in length. Slide 9 - 30 Classifications continued Rhombus Both pairs of opposite sides are parallel. The four sides are equal in length. Copyright © 2009 Pearson Education, Inc. Rectangle Both pairs of opposite sides are parallel. Both pairs of opposite sides are equal in length. The angles are right angles. Slide 9 - 31 Classifications continued Square Both pairs of opposite sides are parallel. The four sides are equal in length. The angles are right angles. Copyright © 2009 Pearson Education, Inc. Slide 9 - 32 Formulas Figure Rectangle Square Parallelogram Triangle Trapezoid Copyright © 2009 Pearson Education, Inc. Perimeter Area P = 2l + 2w A = lw P = 4s A = s2 P = 2b + 2w A = bh P = s1 + s2 + s3 A 21 bh P = s1 + s2 + b1 + b2 A 21 h(b1 b2 ) Slide 9 - 33