Download the breast

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
FEMALE REPRODUCTIVE SYSTEM (II)
Marylee M Kott, MD
Reading: Gartner and Hiatt pp 353, 364-372; Gartner, Hiatt, Strum pp 294-309
Learning Objectives:
 Same as Female Reproductive System I in addition to:
 Identify the various components of the ovary.
 Learn the stages of the developing follicles and the corresponding morphologic features.
 Identify the major types of trophoblastic cells.
 Identify the components of the placenta at its various developmental stages.
 Identify the duct system and lobules of the breast.
 Learn the changes affecting the breast in pregnancy and lactation.
Key Words: amnion, anchoring villus, antrum, areolar, sebaceous gland, atretic follicle, cervical canal,
cervix, chorionic plate, chorionic villi, ciliated cells of the oviduct, corona radiata, corpus albicans, corpus
luteum, cortex of ovary, cumulus oophorus, cytotrophoblast, decidua basalis, decidual cells, endocervix,
endometrial glands, endometrium, menstruating stage endometrium: proliferative stage endometrium:
secretory stage, follicular cell, germinal epithelium, granulosa cell, granulosa lutein cells, interlobular
ducts, intralobular (alveolar) ducts, lactiferous duct and sinus, mammary gland, maternal blood supply,
medulla of ovary, membrane granulosa, myometrium, nipple, oocyte, ovary, oviduct, ampulla oviduct,
fimbriae oviduct, infundibulum oviduct, isthmus, peg cells, placenta, plicae, primary follicle, primordial
follicle, secondary follicle, secretory alveolus, stem villus, stratum basalis, stratum functionalis,
syncytiotrophoblast, theca externa, theca folliculi, theca interna, theca lutein cells, uterus, vagina, zona
pellucida
B. THE OVARY:
 Anatomy:
 Paired pelvic organs which lie on either side of the uterus close to the lateral pelvic wall
 Lie behind the broad ligament and anterior to the rectum.
 Attach along their anterior margin (or hilus) by a double fold of peritoneum, the mesovarium, to
the posterior aspect of the broad ligament.
 Attach at their medial pole to the ipsilateral uterine cornu by the ovarian (utero-ovarian) ligament.
 Attach at the superior aspect of their lateral pole to the lateral pelvic wall by the infundibulopelvic or suspensory ligament.
 Throughout infancy and childhood, the ovary enlarges, increases in weight 30-fold, and changes
in shape.
 Reaches the size, weight, and shape of the adult ovary, and lies within the true pelvis by the time
of puberty.
 Three ill-defined zones are discernible on the cut surface: an outer cortex, an inner medulla, and
the hilus.
 Follicular structures (cystic follicles, corpora lutea, corpora albicantia) are typically visible in the
cortex and the medulla.

Surface Epithelium:
 Single focally pseudostratified layer of modified mesothelial cells
 The cells vary from flat to cuboidal to columnar.
 Separated from the underlying stroma by a distinct basement membrane.
 Surface inclusion cysts arise from cortical invaginations of the surface epithelium that have lost
their connection with the surface.

Stroma:
 The stroma of the ovarian cortex and that of the medulla are continuous and similar (the boundary
between these two zones is ill-defined and arbitrary).
 Spindle-shaped stromal cells, which have scant cytoplasm and resemble fibroblasts, are typically
arranged in whorls or a storiform pattern.
 Cells are separated by a dense reticulum network and a variable amount of collagen which is most
abundant in the superficial cortex.
 Although frequently referred to as the tunica albuginea, the superficial cortex lacks the densely
collagenous, almost acellular appearance and sharp delineation of the tunica albuginea of the
testis.
 Some of the stromal cells may become luteinized; they have a polygonal shape and contain
abundant eosinophilic to clear cytoplasm with variable amounts of lipid.
 Found singly or in small nests, most often in the medulla.
 Number increases during pregnancy and after menopause, probably secondary to elevated levels
of circulating gonadotrophins.
 Decidual cells may occur singly, as small nodules or confluent sheets within the stroma of the
superficial cortex. The represent a response of the ovarian stromal cells to elevated levels of
progesterone.



Primordial Follicles:
 Approximately 400,000 primordial follicles are present at birth and fill the ovarian cortex.
 After birth, their numbers decrease progressively through the process of atresia and
folliculogenesis until they eventually disappear, which marks the end of menopause.
 They consist of a primary oocyte, measuring 40-70 micra in diameter, surrounded by a single
layer of flattened, mitotically inactive, granulosa cells, resting on a thin basal lamina.
 The large spherical nucleus of the oocyte has finely granular, uniformly dispersed chromatin
and one or more dense nucleoli.
 The oocyte is arrested in the prophase of the first meiotic division at the time of birth,
entering a resting period until follicular maturation prior to ovulation or degeneration of the
oocyte during atresia.
Primordial follicles
Maturing Follicles- Folliculogenesis:
 Complete folliculogenesis is the continuous process occurring throughout reproductive life
whereby cohorts of primordial follicles undergo maturation during each menstrual cycle.
 Maturation begins during the luteal phase (equivalent to the secretory phase of endometrium) of
the preceding cycle and continues throughout the follicular phase.
 During each cycle only one such follicle, the preovulatory or dominant follicle, achieves complete
maturation, culminating in the release of the oocyte, i.e., ovulation.
 The other follicles that have begun the maturational process undergo atresia at earlier stages of
their development.
 Folliculogenesis and atresia also occur prenatally, throughout childhood, and during pregnancy,
although maturing follicles do not reach the preovulatory follicle stage during these periods.
Primary follicle (Stage 2) - the surrounding layer of granulosa cells assume a cuboidal to columnar
shape accompanied by enlargement of the oocyte.
 First morphologic evidence of follicular maturation.
Primary follicles.

Multi-lamellar primary (pre-antral follicle; stage 3) - mitotic activity in the granulosa cells results
in their stratification producing three to five concentric layers around the oocyte).
 At this stage an eosinophilic, homogenous, acellular layer, the zona pellucida, appears, encasing
the oocyte. (Its formation is usually attributed to the granulosa cells, but the oocyte may also play
a role).
 The zona pellucida is rich in acid mucopolysaccharides and glycoproteins.
 Pre-antral follicles measure approximately 50-400 micra in diameter, and as they increase in size,
they migrate into the deeper cortex and medulla.
 Simultaneously, the surrounding ovarian stromal cells become specialized into
 Several layers of theca interna cells.
 An outer, ill-defined layer of theca externa cells.
Secondary follicle

Secondary- antral (vesicular follicle; stage 4) - Secretion of mucopolysaccharide-rich fluid by the
granulosa cells results in their separation by fluid-filled clefts which eventually coalesce to form a
single large cavity or antrum lined by several layers of granulosa cells. Concurrently the oocyte
enlarges to its definitive size and assumes an eccentric position at one pole of the follicle.

Mature or Graafian follicle (Stage 5) - the granulosa cells proliferate at this eccentric position to
form the cumulus oophorus which, containing the oocyte in its center, protrudes into the antrum.
Graafian follicle.
Graafian follicle..

Ovulation - follicle:
 Normally only one or two mature follicles will continue to grow after reaching a diameter of 4
mm, a size that is attained by the onset of the follicular phase (proliferative phase of
endometrium). Only one of them will become the preovulatory follicle.
 Late in follicular growth, the oocyte, its surrounding zona pellucida, and a single layer of radially
oriented, columnar granulosa cells, the corona radiata, detach from the cumulus oophorus and
float in the antral fluid.
 The preovulatory follicle reaches a diameter of 15-25 mm shortly before ovulation. It protrudes
partially from the ovarian surface at a point that represents the eventual rupture point, or stigma.
 The follicle then ruptures, possibly secondary to contraction of the perifollicular smooth muscle
cells, liberating the follicular fluid and oocyte with its surrounding layers into the peritoneal
cavity.
 Following ovulation the stigma is occluded by a mass of coagulated follicular fluid, fibrin, blood,
granulosa and connective tissue cells; it is eventually converted to scar tissue.

Ovulation – oocyte:
 The oocyte within the ovulatory follicle enters telophase of the first meiotic division shortly
before ovulation.
 Chromosomal reduction occurs by migration of one-half of the oocyte chromosomes into a
portion of the oocyte cytoplasm This separates from the cell as the first polar body.
 The first meiotic division which began in fetal life is now complete


The oocyte is now designated the secondary oocyte.
Immediately after expulsion of the first polar body, the secondary oocyte enters the second
meiotic division, arresting at metaphase until fertilization occurs.
 Granulosa Layer:
 The granulosa cells within the maturing and graafian follicles are polyhedral cells measuring 5-7
micra in diameter.
 The cytoplasm does not have lipid until the onset of luteinization (several hours prior to
ovulation).
 Cells typically surround small cavities, Call-Exner bodies, which have a distinctive appearance.
 These represent one of the most specific features of granulosa cells, both normal and
neoplastic.
 They are delimited from the granulosa cells by a basal lamina, and typically contain a deeply
eosinophilic filamentous material consisting of excess basal lamina.
 Is avascular and devoid of reticulum framework.
 Cells produce estradiol, progesterone and inhibin.






Theca Layers:
Differ from granulosa cells in that they differentiate continuously from the stromal cells at the
periphery of developing follicles. Process begins during fetal life and ends at the termination of
the menopause.
The thecal component of the antral follicle is characterized by two layers:
o A well-developed theca interna (produces hormones).
o A less well-defined theca externa (does not produce hormones).
Has a rich vascular plexus.
Cells produce estradiol and androstenedione.
Corpus Luteum of Menstruation (CLM):
 Produced by the collapsed ovulatory follicle following ovulation in the absence of fertilization
(14th day of the typical 28-day menstrual cycle) .
 Is a 1.5-2.5 cm, round, yellow structure with festooned contours and a cystic center filled with a
gray, focally hemorrhagic coagulum when mature.
 The luteinized granulosa cells of the mature CLM (granulosa-lutein cells) are large, polygonal
cells with abundant pale eosinophilic cytoplasm containing lipid droplets.
 The theca interna cells become luteinized. Their size is approximately half that of the granulosalutein cells.
 During the maturation of the CLM, capillaries originating from the theca interna layer penetrate
the granulosa layer and reach the central cavity.
 Involution changes begin on the 8th or 9th day following ovulation. There is progressive fibrosis
and shrinkage over a period of several months and eventual conversion to a corpus albicans.
Corpus luteum.
Corpus albicans.

Corpus Luteum of Pregnancy (CLP):
 Is usually larger than CLM due to the presence of a central cystic cavity filled with fluid and
coagulum composed of fibrin and blood.
 The first morphologic evidence within the corpus luteum that conception has occurred is the
absence of the regressive changes that normally appear in CLM on the 8th or 9th day .
 The granulosa-lutein cells enlarge and their cytoplasm becomes vacuolated.
 Eosinophilic colloid or hyaline droplets within the granulosa cells of CLIP are almost diagnostic
of pregnancy. Become more numerous as gestation progresses, although by term their numbers
decrease as they undergo calcification.
 During the puerperium, the CLP undergoes involution and conversion to a corpus albicans in a
similar fashion to that seen with CLM.

Atretic Follicles:
 Approximately 400 of the original 400,000 primordial follicles present at birth mature to the point
of ovulation.
 The remaining 99.9% undergo atresia. Process begins before birth and continues throughout
reproductive life. Is most intense after birth, during puberty, and during pregnancy.
 Factors which initiate atresia and determine which follicles will ultimately undergo atresia are
unknown.
 Atretic process varies with the stage of follicular maturation that has been reached. Atresia of
early follicles begins with degeneration of the oocyte then with the granulosa layer. The follicles
disappear without a trace.
 Atresia of follicles that have reached the antral stage of development is more complex and
variable.
 The earliest evidence of atresia in these follicles is the mitotic inactivity of the granulosa cells and
a decrease in their number.
 Manifested by thinning and focal exfoliation of the granulosa layer. ii. Ultimately leads to
obliterative atresia and the formation of a scar, the corpus fibrosum (or corpus atreticum).
 Some of the follicles may persist for an indefinite period of time at this stage as atretic cystic
follicles.

Hilus Cells:
 Morphologically identical to testicular Leydig cells (with the exception of a female chromatin
pattern).
 May ensheathe nerve bundles.









Lie as nests within loose connective tissue.
Contain specific crystals of Reinke, which are homogenous, eosinophilic non-refractile, rodshaped structures, with blunt, but occasionally tapered ends.
Produce androstenedione.
Rete Ovarii:
 The ovarian analogue to the rete testis.
 Is a remnant of the mesonephric (Wolffian) duct which is present in the hilus of all ovaries.
 Consists of a network of irregular clefts, tubules and small cysts lined by epithelium that varies
from flat to cuboidal to columnar.
THE PLACENTA: MUCH OF THIS YOU WILL GET IN DEVO, SO IT WILL MOSTLY NOT
BE PART OF THE HISTOLOGY EXAM. THOSE PORTIONS ARE IN RED
Development:
Undergoes a series of profound morphologic changes during its short life span.
Is of fetal origin except for a small amount of decidua adherent to the fetal membranes and the basal plate.
Fully developed measures approximately 18 x 16 x 2.3 cm and weighs 400-600 grams.
At the time of birth it occupies almost one third of the internal surface of the expanded uterus.
Fertilization of the ovum precedes implantation and development of the placenta.
 The ovum is fertilized in the ampullar-isthmic junction of the fallopian tube
 Takes about 4 days to reach the uterus.
 By this time several cell divisions have occurred and a compact clump of cells, the morula,
surrounded by the zona pellucida is formed.
 A cavity appears in this solid mass of cells, after which it is called a blastocyst:
 Thin-walled, consisting of a single layer of cells, the trophoblast.
 There is an aggregation of cells called the inner cell mass, which bulges inward from the
wall of the blastocyst into its cavity and gives rise to the embryo.
 Remains free in the uterine cavity for only 2 or 3 days after which it becomes implanted in
the endometrium.
 The site of implantation may be anywhere on the wall of the uterus.
 Most commonly it is high up on the posterior wall.
 Implantation usually begins about the seventh day after fertilization and is complete about the
tenth day.
FOLLICLE DEVELOPMENT YOU DO HAVE TO KNOW
RECOGNIZE
SYNCIOTROPHOBLASTS,
KNOTS
AND
CYTOTROPHOBLASTS !!!!!

Trophoblast cells
 Differentiate into two distinct cell layers.
 Inner layer of cytotrophoblast. Uniform cells with clear cytoplasm, distinct cell membranes,
and vesicular nuclei.
 Outer layer of syncytiotrophoblast. Multinucleated cells with dense nuclei suspended in
abundant amphophilic cytoplasm.
 Between these two layers are large mononuclear cells designated intermediate trophoblast
 Abundant amphophilic cytoplasm.
 May have more than one nucleus.
 Emanate from the cytotrophoblast.








Display a gradient of increasing size proportional to their distance from the cytotrophoblastic
stem cells.
Fuse, particularly at the advancing margin, to form the syncytiotrophoblast.
Between the 9th and 13th post-fertilization days, blood-filled lacunae form within the rapidly
growing trophoblastic mass and separate it into trabecular columns.
As the lacunae enlarge, extensions of trophoblast left between them are called primary or
trophoblastic stem villa.
By day 15 the different germ layers are forming in the embryo.
By day 15 mesoderm has grown out from the
developing embryo to form a lining for
the shell of the trophoblast that surrounds the blastocyst.
 At this point the trophoblast is called the chorion.
Mesoderm then extends into the villi to provide them with a mesodermal core.
 When this happens, the villi are called secondary or definitive stem villi.
 These grow and branch.
Fetal blood vessels develop in the mesoderm in their cores and later become connected to the
fetal circulation.
 The villus is now known as the tertiary stem villus.
Definitive yolk sac Chorionic plate


Placental Hormones:
Three main hormones produced:
 Human chorionic gonadotropin (hCG)
 Human placental lactogen (hPL)
 Pregnancy-specific beta 1-glycoprotein (SP1).
 Most widely distributed in the syncytiotrophoblast.
 The intermediate trophoblast contains a considerable amount of both hPL and SP1 throughout
regnancy as well as small amount of hCG early in gestation.
 None of these hormones is localized in the cytotrophoblast.

The Decidua
 Is all but the deepest layer of endometrium which is destined to be shed when a baby is born
 The decidua that lies between the chorionic sac and the basal layer of the endometrium is called
the decidua basalis.
 The decidua basalis becomes the maternal part of the placenta.
 The only part that is of maternal origin.
 The endometrium that lies between the chorionic sac and the myometrium is called the basal
plate
 Consists of decidua basalis plus the basal layer of the endometrium.
 The decidua parietalis lines the entire pregnant uterus except where the placenta is forming.
 The decidua capsularis is the portion of endometrium superficial to the developing embryo. Has
to cover a larger and larger area and becomes very thin and atrophic as the embryo grows. After
3-4 months the size of the chorionic sac that contains the embryo has become so large that
decidua capsularis comes in contact with the decidua parietalis at the opposite surface of the
uterus; hence the uterine cavity is obliterated. The decidua capsularis then blends with the decidua
parietalis and disappears as a separate layer.

Chorionic Sac
 Until 12 to 16 weeks, the entire surface of the chorionic sac is covered with chorionic villi.
 As the sac enlarges, those villi associated with the decidua capsularis degenerate and become
atrophic. By 16 weeks the greater part of the surface of the sac is smooth and is called the
chorion laeve.
 The remainder of the surface of the sac (the part adjacent to the decidua basalis) continues to be
covered with villi which keep growing and branching.
 This part which constitute the fetal part of the placenta is called chorion frondosum.
 By 16 weeks, the placenta is discoid in shape, consisting of chorion frondosum and associated
decidua basalis.
 Maturation:
 Primary stem villi:
 Divide and give rise to the secondary stem villi.
 Secondary stem villi :
 Divide and give rise to the tertiary stem villi.
 Tertiary stem villi:
 Grow downward and insert onto the basal plate.
 Branch in the intervillous space to form the terminal villi.
 Lobule - the functional subunit composed of villous parenchyma derived from a single
secondary stem villous.

















Fetal cotyledon - the aggregate of villi derived from a primary stem villus .
Terminal villi are the functional units of the placenta.
 Appearance changes drastically over the course of normal gestation.
 Immature first trimester villi – KNOW THIS
Covered by two distinct layers of trophoblast
 Inner layer of cytotrophoblast.
 Outer layer of syncytiotrophoblast.
Stroma is very loose and mucoid in appearance.
Hofbauer cells, the fetal tissue macrophages of the placenta, are numerous.
Vessels are small.
 Second trimester villi
The syncytiotrophoblastic layer is thinner.
The nuclei are less evenly dispersed.
The cytotrophoblast does not form a continuous layer and is difficult to find after 16
weeks.
The villous stroma is more compact and contains some collagen.
Hofbauer cells are less conspicuous.
Villous capillaries are larger and more numerous.
 Mature villi
Smaller still (average 40 micron in diameter).
The syncytiotrophoblastic nuclei are irregularly aggregated to form syncytial knots
 Are found in about 30% of mature terminal villi.
The stroma is reduced to thin strands compressed between the numerous dilated
capillaries, which constitute almost the entire surface of such villi.
The intervillous space develops rapidly to become an enormous blood sinus…
 Bounded on one side by the chorion (chorionic plate) and on the other side by the
deciduas basalis.
 Is filled with maternal blood.
 Fibrin deposits are also present.
Septa appear in the placenta at about 3 months.
 Composed of irregular folds of the decidua basalis that are drawn into the
intervillous space by the relatively slowly growing anchoring villi.
 The cell islands that occur in the septa are the intermediate trophoblastic cells.
MEMBRANES:
 Amnion is the innermost aspect of the embryonic cavity.
 By 12 weeks the amniotic cavity completely occupies the chorionic sac.
 The cavity remains filled with amniotic fluid, which by the end of gestation amount to
approximately one liter.
 Is lined by a single layer of flat to cuboidal epithelial cells that reside on a basement membrane.
 The basement membrane is attached to an underlying thin layer of connective tissue.
 The amnion, although adjacent to the chorion, is not truly fused to it.
 Is avascular.
 The chorion forms the base for peripherally radiating villi.
 Serves to encapsulate the early embryo and developing amnion.
 Is composed of a connective tissue membrane that carries the fetal vasculature.
 Its inner aspect is bounded by the outer layer of amnion.
 Its outer aspect is directly associated with the trophoblastic villi that sprout from the surface.
THE UMBILICAL CORD:
 Surface is lined by a single layer of amniotic epithelium, Squamous to cuboidal
 Often becomes stratified and closely resembles its epidermal contiguity in the region of fetal
cord insertion.
 Parenchyma is composed of Wharton's jelly.
 Composed of, in large part, mucopolysaccharides.
 Is derived from the extra-embryonic mesoblast.
 Contains evenly distributed spindle-shaped fibroblasts with long extensions and numerous
mast cells.
 Two arteries and one vein are present in the normal umbilical cord embedded in the Wharton's
jelly.
 The arteries spiral in parallel around the vein.
 The arteries possess no internal elastic lamina and have a double-layered muscular wall
composed of interlacing smooth muscle bundles.
 The umbilical vein has an elastic subintimal layer.
 Compared to the arteries, the vein has a larger diameter and a thinner muscular coat
consisting of a single layer of circular smooth muscle.
 There are no vasa vasorum or lymphatic channels present in the umbilical cord.
 Fetuses beyond 20 weeks of gestation have vasa vasorum in the intra-abdominal portions of their
umbilical arteries.
 The umbilical vessels divide within the chorionic plate .
 They then dive beneath this layer to establish the circulation of primary vascular
ramification
 End in the terminal villi.
 Using histologic criteria it is different to distinguish between the branches of the umbilical
vein and umbilical arteries.
 The gross anatomic distribution is very distinctive.
 Arteries always cross over veins when observed on the fetal surface of the placenta.
THE BREAST
 Mammary glands
 Are modified sweat glands with the specialized function of providing nutrients for the
newborn infant.
 Serve as target organs for a variety of hormones.
 These either have an active or a passive role in the physiology of mammary glands.
 Hormones that actively influence breast physiology are prolactin, estrogen and progesterone.
 Estrogen promotes the growth and development of the duct system.
 Progesterone stimulates lobular development.
 The presence of prolactin is necessary for estrogen and progesterone to exert their effect.
 The milk-producing lobular units are the functional components of the mature breast.
 A system of branching ducts connect them with the nipple-areolar complex.
 Are surrounded by variable amounts of fat and connective tissue which make up most of the bulk
of the breast.
 Cooper's ligaments - Dense connective tissue which extends from the underlying pectoralis
fascia to the skin of the breast. Hold the breast upward. Their lengthening is presumed responsible
for drooping of the breast with advanced age.

Nipple and areola:
 The tip of the nipple usually possesses 15-20 orifices (galactophores). Lead into the collecting
ducts which deliver the milk to the exterior.
 Are covered by a keratinizing stratified squamous epithelium.
 Contain sebaceous and sweat glands.
 Hair follicles are found only in the periphery of the areola.
 The areolar surface is punctated by rounded elevations known as the tubercles of Montgomery.
Contain the openings of the ducts of large sebaceous glands known as the glands of
Montgomery.

Connective tissues ridged with bundles of smooth muscle and elastic tissue lie deep to the
dermis in the nipple and areola. Most of the smooth muscle bundles seem to converge towards
the region of the nipple.

Duct System:
 Is arranged in a segmental, roughly radial pattern.
 Different regions of the breast, both directly deep to the nipple and extending outward from
the nipple, are drained by their own collecting system whose duct opens at the nipple.
 This arrangement divides the breast into poorly defined segments or lobes.
 Overlap and have no macroscopic or anatomic delineation.
 Just deep to the nipple a collecting duct widens for a distance, defining an area termed the
lactiferous sinus.
 The ducts, and particularly the sinuses, have longitudinal ridges which appear as prominent
infoldings on cross-section.






Stratified squamous epithelium extends a short distance into the openings of the major ducts.
Transition to the columnar or cuboidal epithelium which characterizes the entire duct system
occurs abruptly.
A continuous layer of luminal epithelial cells with oval nuclei perpendicular to the surface lines
the lactiferous ducts.
A discontinuous layer of myoepithelial cells exists between the basement membrane and the
luminal epithelial cells. The long axis of the epithelial cell is perpendicular to that of the
myoepithelial cell.
Ducts are surrounded by a loose fibrous tissue with a capillary network richer than that seen in the
surrounding connective tissue and fat beyond this area.
Glandular Area:
 The acini (alveoli) - a cluster of blind-ending glandular spaces which are the milk-producing
units of the breast. They are entered by the terminal element of the ductal system (terminal
ducts). They are set within a rich and specialized stroma which defines the lobular unit. The
Connective tissue:
 Is usually loose.
 Possesses many capillaries.
 Often contains a few lymphocytes, histiocytes, plasma cells and mast cells.
 Is sharply demarcated from the surrounding fat and from the more dense fibrous tissue
of the structural rather than functional portion of the breast.
 The rounded acini have a luminal epithelium which is either cuboidal or columnar.
 The cells of different lobular units vary greatly in their cytoplasmic features, but the cells within
an individual lobular unit are usually similar to one another.
 Beneath the luminal epithelium is a discontinuous layer of myoepithelial cells which tend to
have smaller nuclei and clearer cytoplasm when compared to the luminal cells.
 A basement membrane surrounds each acinus.
FEMALE REPRODUCTIVE SYSTEM II LABORATORY
SLIDE 80, FALLOPIAN TUBE
Some of the slides may have two lumens in one section due to the tortuous course of some portions of the
oviduct. The mucosal layer lies directly on the muscularis. It is composed of luminal epithelial cells
and scanty lamina propria. The lining is simple columnar. Many of the lining cells have prominent cilia.
Some of the cells are non-ciliated. A few slender and darkly stained intercalary, or peg cells are present
among the other cells. Also a few lymphocytes are present within the lining. The lamina propria
contains a few lymphocytes. The muscularis is composed of smooth muscle fibers that are poorly
organized into outer longitudinal and inner circular layers. The serosa has a smooth flat mesothelial
lining. Some of the slides may contain a few cystically dilated structures beneath the serosa. These are
Walthard rests. They are lined by a transitional-type epithelium that may become attenuated.
SLIDE 81, OVARY
The ovary has 3 ill-defined zones: an outer cortex, an inner medulla, and the hilum. All of the slides have
an ovary with a cortex and medulla. Some of the sections may contain a hilum having numerous blood
vessels and rete ovarii. The surface epithelium is composed of a single layer of flat to cuboidal to
columnar cells (modified mesothelial cells). The surface lining may be missing over a large area, an
aritfact due to tissue handling. In some of the sections and focally, the surface epithelium may invaginate
into the underlying cortex and form surface glandular inclusions. Just beneath the surface epithelium is a
palely stained layer called the tunica albuginea (the superficial portion of the cortex); it is composed of
stromal cells and collagen fibers. Deeper, the stroma of the ovarian cortex and the medulla are continuous
and similar. The boundary between the cortex and medulla are ill defined and arbitrary. The stromal
cells are spindle-shaped; the nuclei stain darkly and they have very little cytoplasm.
Numerous primordial follicles are present in the cortex; they are located in the superficial portion. They
are composed of a primary oocyte surrounded by a single layer of flattened, mitotically inactive granulosa
cells resting on a thin basal lamina. Rare secondary or pre-antral follicles are present; they consist of an
oocyte surrounded by 3-5 concentric layers of granulosa cells without any spaces separating the cells.
Five to nine cystic structures are present in the cortex-medulla. They represent the various stages of the
antral follicle, the majority of which are atretic (atretic cystic follicles). The atresia is manifested by a
decrease in the number of the granulosa cells, and thinning and focal exfoliation of the granulosa layer.
Some of the antral follicles contain fluid (follicular liquor), stained pink in your section. The largest
antrum occurs in the Graafian follicle that may be present in some of the slides. The Graafian follicle
contains the oocyte surrounded by the zona pellucida, corona radiata (a single layer of radially oriented
columnar granulosa cells) and the cumulus oophorus (a heaped-up area of granulosa cells containing the
oocyte).
Many corpora albicancia (white-pink well defined hyalinized areas in the deep cortex or medulla
containing a few hemosiderin-laden macrophages; they represent the end result of the corpus luteum) and
some corpora fibrosa (microscopic pink fibrous nodules present in the deep cortex and medulla; they
represent the end stage of the atretic follicles) are also seen.
SLIDE 82, OVARY (Pregnancy)
Most of the slides contain a cortex, a medulla, and a hilus. All the structures described in the previous
slide are present in the current one. Many slides may contain a corpus luteum of pregnancy consisting
of a well-delineated nodule composed of large polygonal cells (luteinized granulosa cells) with
eosinophilic and slightly vacuolated cytoplasm. Eosinophilic colloid or hyaline droplets are present in
some of the cells. A very rich capillary network is present among the cells. A thin layer of theca interna
cells surrounds and invaginates the corpus luteum. The theca-lutein cells are much smaller than the
granulosa-lutein cells. The hilus contains prominent blood vessels. Also, the rete ovarii is present in
some sections. It consists of irregular clefts and tubules lined by a single layer of columnar to cuboidal
epithelium. A thin layer of dense stroma resembling the ovarian stroma surrounds some of these tubules.
SLIDE 83, PLACENTA
The sections are from a 3rd trimester mature placenta. The placenta consists of the fetal membranes
(amnion and Chorion), villi, intervillous space and the decidual basalis.
The amnion is lined by a single layer of flat to cuboidal epithelial cells covering a thin layer of
connective tissue. The amnion is avascular. The amnion in your slide may be detached, artifactually,
from the underlying Chorion.
The Chorion is composed of a connective tissue membrane containing the branches of the umbilical
vessels. It is lined on the outer aspect (the side facing the villi and the intervillous space) by trophoblastic
cells (mostly syncytiotrophoblastic cells).
Most of the villi are small and have a fibrovascular core covered with a stretched layer of
syncytiotrophoblastic cells. Some of the syncytiotrophoblastic cells cluster to form syncytial knots.
Some of the small terminal villi can be seen branching from the larger villi. The intervillous space
contains the maternal blood and clumps of fibrin. The decidua basalis is the maternal part of the placenta
and is composed of plump endometrial stromal (decidual) cells and large vascular spaces. Irregular folds
(septa) of the decidual basalis can be seen in the intervillous space. They contain many groups of slightly
large cells; each usually has one nucleus and abundant amphophilic cytoplasm. These are the
intermediate trophoblastic cells.
A section of umbilical cord is present on the slide. A single layer of amniotic flat to cuboidal epithelium
covers the surface. A few islands of stratified squamous epithelium may be seen. The parenchyma of the
cord is composed of loose, myxoid connective tissue (Wharton’s jelly) containing some fibroblasts.
Two arteries and one vein are present. The arteries have no internal elastic lamina and have a doublelayered muscular wall composed of interlacing smooth muscle bundles. The vein has a single layer of
circular smooth muscle.
SLIDE 51, NIPPLE
The nipple, slightly protruding from the center of the section, and the surrounding areola are lined by a
keratinized stratified squamous epithelium. Sebaceous glands, present in the dermis, open on to the
surface. The dermis contains apocrine and eccrine sweat glands. Many bundles of smooth muscle
fibers are present in the dermis. In most of the slides, the lactiferous ducts are cut in cross sections and
will not be seen communicating with the surface. The ducts have prominent infoldings that are lined by
an inner cuboidal layer of epithelial cells and an outer layer of myoepithelial cells. Deeper in the breast
tissue, there are a few lobules in the resting stage containing terminal ducts and acini. Their lining is
similar to that of the lactiferous ducts. The lobules contain loose connective tissue.
SLIDE 16, BREAST WITH PREGNANCY/LACTATION-ASSOCIATED CHANGES
Compare this slide to the previous one. The lobules are packed and greatly expanded with acini. Many
of the cells of the inner epithelial layer of the acini as well as the terminal ducts have vacuolated
cytoplasm. The outer myoepithelial layer can be seen in many acini and ducts. The lumens of some of
the acini and ducts contain eosinophilic secretions as well as some neutrophils.
Segmental ducts can be seen between the lobules. They branch to give rise to the terminal ducts. Each
terminal duct enters a lobule. Before it enters the lobules it is called an extra-lobular terminal duct.
Within the lobules it is called the intra-lobular terminal duct. The segmental ducts, terminal ducts, and
acini have similar linings, however, the segmental ducts usually do not show secretory changes.
________________________________________________________________________