Download 5.7 Notes

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
5.7
The Ambiguous Case for the Law
of Sines
AMBIGUOUS
•
•
•
/ctr
Open to various
interpretations
Having double meaning
Difficult to classify,
distinguish, or
comprehend
RECALL:
• Opposite sides of
angles of a triangle
• Interior Angles of a
Triangle Theorem
• Triangle
Inequality Theorem
/ctr
RECALL:
•
Oblique Triangles
Triangles that do
not have right
angles
(acute or obtuse
triangles)
/ctr
RECALL:
•
LAW OF SINE
sin A sin B sin C


a
b
c
– 1  sin   1
/ctr
RECALL:
• Sine values of
supplementary
angles are equal.
Example:
Sin 80o = 0.9848
Sin 100o = 0.9848
/ctr
Law of Sines:
The Ambiguous Case
Given:
lengths of two sides
and the angle opposite
one of them (S-S-A)
/ctr
Possible Outcomes
Case 1: If A is acute and a < b
C
a. If a < b sinA
a
b
C
a
h = b sin A
A
c
b
B
A
h
c
B
NO SOLUTION
Possible Outcomes
Case 1: If A is acute and a < b
C
b. If a = b sinA
a
b
C
h = b sin A
A
c
b
B
A
h=a
c
B
1 SOLUTION
Possible Outcomes
Case 1: If A is acute and a < b
C
b
b. If a > b sinA
a
C
h = b sin A
A
c
b
B
a

180 - 
A
c
h
a

B
2 SOLUTIONS
B
Possible Outcomes
Case 2: If A is obtuse and a > b
C
a
b
A
c
B
ONE SOLUTION
Possible Outcomes
Case 2: If A is obtuse and a ≤ b
C
a
b
A
c
B
NO SOLUTION
Determine the number of possible
solutions for each triangle.
• i) A=30deg a=8 b=10
• ii) b=8 c = 10 B = 118 deg
Find all solutions for each triangle.
• i) a = 4 b = 3 A = 112 degrees
• ii) A = 51 degrees a = 40 c = 50
EXAMPLE 1
Given: ABC where
a = 22 inches
a>b
b = 12 inches
mA > mB
SINGLE–SOLUTION CASE
(acute)
mA =
Find m B, m C, and c.
o
42
sin A = sin B
a
b
Sin B  0.36498
mB = 21.41o or 21o
Sine values of supplementary
angles are equal.
The supplement of B is B2.
 mB2=159o
mC = 180o – (42o + 21o)
o
mC = 117
sin A = sin C
a
c
c = 29.29 inches
SINGLE–SOLUTION CASE
sin A = sin B
a
b
Sin B  1.66032
mB = ?
Sin B > 1 NOT POSSIBLE !
Recall: – 1  sin   1
NO SOLUTION CASE
/ctr
EXAMPLE 3
Given: ABC where
b = 15.2 inches
a = 20 inches
b<a
NO SOLUTION CASE
(obtuse)
mB =
Find m B, m C, and c.
o
110
sin A = sin B
a
b
Sin B  1.23644
mB = ?
Sin B > 1 NOT POSSIBLE !
Recall: – 1  sin   1
NO SOLUTION CASE
/ctr
EXAMPLE 4
Given: ABC where
a = 24 inches
b = 36 inches
a ? b sin A
a<b
24 > 36 sin 25o
TWO – SOLUTION CASE
o
mA = 25 (acute)
Find m B, m C, and c.
sin A = sin B
a
b
Sin B  0.63393
mB = 39.34o or 39o
The supplement of B is B2. 
mB2 = 141o
mC1 = 180o – (25o + 39o)
mC1 = 116o
mC2 = 180o – (25o+141o)
mC2 = 14o
sin A = sin C
a
c1
c1 = 51.04 inches
sin A = sin C
a
c2
c = 13.74 inches
/ctr
EXAMPLE 3
Final Answers:
mB1 = 39o mB2 = 141o
mC1 = 116o mC2 = 14o
c1 = 51.04 in.C2= 13.74 in.
TWO – SOLUTION CASE
/ctr
SEATWORK: (notebook)
Answer in pairs.
Find m B, m C, and c, if
they exist.
1) a = 9.1, b = 12, mA = 35o
2) a = 25, b = 46, mA = 37o
3) a = 15, b = 10, mA = 66o
/ctr
Answers:
1)Case 1:
mB=49o,mC=96o,c=15.78
Case 2:
mB=131o,mC=14o,c=3.84
2)No possible solution.
3)mB=38o,mC=76o,c=15.93
/ctr
Related documents