Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Geometry/Trig 2 Name: __________________________ Unit 3 Review Packet – Page 2 – Answer Key Date: ___________________________ Section IV – Determine which lines, if any, are parallel based on the given information. 1.) m1 = m9 c || d 2.) m1 = m4 None 3.) m12 + m14 = 180 a || b 4.) m1 = m13 None 5.) m7 = m14 c || d 6.) m13 = m11 None 7.) m15 + m16 = 180 None 8.) m4 = m5 a || b 1 2 3 4 a b 5 6 7 8 c J 1. Given: GK bisects JGI; m3 = m2 G Prove: GK || HI 1. GK bisects JGI 13 14 15 16 d Section II - Proofs Statements 9 10 11 12 1 2 K Reasons 1. Given 3 I 2. m1 = m2 2. Definition of an Angles Bisector 3. m3 = m2 3. Given 4. m1 = m3; 1 3 4. Substitution 5. GK || HI 5. If two lines are cut by a transversal and corresponding angles are congruent, then the lines are parallel. H Geometry/Trig 2 Unit 3 Proofs Review – Answer Key 2. Given: AJ || CK; m1 = m5 Page 2 A Prove: BD || FE C Reasons Statements 1. AJ || CK 1. Given 2. m1 = m3 1 3 2. If two parallel lines are cut by a transversal, then corresponding angles are congruent. 3. m1 = m5 3. Given 4. m3 = m5 3 5 4. Substitution 5. BD || FE 5. If two lines are cut by a transversal and corresponding angles are congruent, then the lines are parallel. 3. Given: ST || QR; 1 3 1 B F 2 3 4 5 J E K Prove: 2 3 D P Reasons Statements 1. ST || QR 1. Given 2. 1 2 2. If two parallel lines are cut by a transversal, then corresponding angles are congruent. 3. 1 3 3. Given 4. 2 3 4. Substitution S Q 2 1 3 T R 4. Given: a || b; 3 4 Statements Prove: 10 1 Reasons 1 a 1. Given 2. 1 3 2. Vertical Angles Theorem 3. 1 4 3. Substitution 4. a || b 4. Given 5. 4 7 5. If lines are parallel, then alternate interior angles are congruent. 6. 1 7 6. Substitution 7. 7 10 7. Vertical Angles Theorem 8. 1 10 8. Substitution 6 Prove: 1 and 7 are supplementary. 9 10 d Reasons 1 b a a || b 8 7 b c 5. Given: a || b 1. 2 4 5 1. 3 4 Statements 3 4 6 8 3 5 7 2 1. Given 2. m1 + m4 = 180 2. Definition of Linear Pair/Angle Addition Postulate 3. m4 = m7; 4 7 3. If lines are parallel, then alternate interior angles are congruent. 4. m1 + m7 = 180 4. Substitution 5. 1 and 7 are supplementary 5. Definition of supplementary angles Geometry/Trig 2 Name: __________________________ Unit 3 Review Packet – Page 5 – Answer Key Date: ___________________________ 6. Given: BE bisects DBA; 1 3 Prove: CD // BE Reasons Statements 1. BE bisects DBA 1. Given 2. 2 3 2. Definition of an Angle Bisector 3. 1 3 3. Given 4. 2 1 4. Substitution 5. CD // BE 5. If two lines are cut by a transversal and alternate interior angles are congruent, then the lines are parallel. C B 2 3 1 D E A Geometry/Trig 2 Name: __________________________ Unit 3 Review Packet – page 6 – Answer Key Date: ___________________________ 7. Given: AB // CD; BC // DE Reasons Statements Prove: 2 6 1. AB // CD 1. Given 2. 2 4 2. If two parallel lines are cut by a transversal, then alternate interior angles are congruent. 3. BC // DE 3. Given 4. 4 6 4. If two parallel lines are cut by a transversal, then alternate interior angles are congruent. 5. 2 6 5. Substitution B D 6 2 A 8. 1 3 5 7 C E Given: AB // CD; 2 6 Reasons Statements 4 Prove: BC // DE 1. AB // CD 1. Given 2. 2 4 2. If two parallel lines are cut by a transversal, then alternate interior angles are congruent. 3. 2 6 5. Given 4. 4 6 4. Substitution 5. BC // DE 3. If two lines are cut by a transversal and alternate interior angles are congruent, then the lines are parallel. B D 6 2 A 1 3 4 C 5 7 E Geometry/Trig 2 Name: __________________________ Unit 3 Review Packet – page 7– Answer Key Date: ___________________________ Section VI – Solve each Algebra Connection Problem. 1. 2. w 4x - 5 z + 57 x 23y 65 37 2y 125 w = 37 x = 143 x = 30 y = 71.5 y=5 z = 86 3. 4. 30 x + 12 y 75 6x 5x 8x + 1 x = 21 y = 75 5. x = 11 6. 4x + 13 B 5x 6x 6x 4x + 25 A 4x + 25 D 4x + 17 83 80 C x = 20 4x + 13 Is AB // DC? yes x = 23 Is AD // BC? no Geometry/Trig 2 Name: __________________________ Unit 3 Review Packet – page 8 – Answer Key Date: ___________________________ Measure of each interior angle if it was a regular polygon Sum of the Exterior Angles Measure of each exterior angle if it was a regular polygon. Number of Diagonals that can be drawn. Number of Sides Name of polygon Sum of interior angles. 3 Triangle 180 60 360 120 0 4 Quadrilateral 360 90 360 90 2 5 Pentagon 540 108 360 72 5 6 Hexagon 720 120 360 60 9 7 Heptagon OR Septagon 900 128.57 360 51.43 14 8 Octagon 1080 135 360 45 20 9 Nonagon 1260 140 360 40 27 10 Decagon 1440 144 360 36 35 n n-gon (n 2)180 (n 2)180 n 360 360 n n(n 3) 2