Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Geometry Chapter 6 By: Cate Hogan, Austin Underwood, Paige Mager Classifying Quadrilaterals • Parallelogram: A quadrilateral with both pairs of opposite sides being parallel • Rhombus: A parallelogram with four congruent sides • Rectangle: parallelogram with four right angles • Square: parallelogram with four congruent sides and four right angles • Kite: a quadrilateral with two pairs of adjacent sides congruent and no opposite sides congruent • Trapezoid: a quadrilateral with exactly one pair of opposite sides Properties of Parallelograms • Opposite sides of a parallelogram are congruent • Opposite sides are congruent • Opposite angles are congruent • Consecutive angles are supplementary • Diagonals bisect each other • Diagonals form two congruent triangles Proving That a Quadrilateral is a Parallelogram • If both pairs of opposite sides of a quadrilateral are congruent, it is a parallelogram • If both pairs of opposite angles of a quadrilateral are congruent, it is a parallelogram • If the diagonals of a quadrilateral bisect each other, it is a parallelogram • If one pair of opposite sides of a quadrilateral is both congruent and parallel, then it is a parallelogram Special Parallelograms • Rhombus: – If one diagonal bisects two angles of a parallelogram, then the parallelogram is a rhombus – If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus • Rectangle: – If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle • Square: – Combine properties previously mentioned in the slide Trapezoids and Kites • Trapezoid: – Base sides are parallel – The two pairs of angles between the bases are supplementary • Isosceles trapezoid: – Look at properties of a trapezoid – Base angles are congruent – Diagonals are congruent • Kite: – Diagonals are perpendicular – Side angles are congruent – Vertical diagonals form two congruent triangles – Diagonals bisect top and bottom angles Placing figures in the Coordinate Plane • Consecutive points should be connected segments of the shape Proofs Using Coordinate Geometry • The midsegment of a trapezoid is parallel to the bases • The length of a midsegment of a trapezoid is (b +b ) 2 1 2 Citations • • • Prentice Hall Mathematics Geometry Textbook http://www.google.com/imgres?u m=1&safe=active&hl=en&noj=1&b iw=1024&bih=585&tbm=isch&tbni d=tVKakCfduEexWM%3A&imgrefu rl=http%3A%2F%2Fwww.sparknot es.com%2Ftestprep%2Fbooks%2F newsat%2Fchapter20section5.rht ml&docid=XBt3YIVvH7ywqM&img url=http%3A%2F%2Fimg.sparknote s.com%2Fcontent%2Ftestprep%2F bookimgs%2Fnewsat%2F0008%2Ft rapezoid.gif&w=150&h=83&ei=jXZUsHgIcvOkQer7YGYCw&zoom= 1&iact=rc&dur=47&page=1&start= 0&ndsp=14&ved=0CF4QrQMwAg http://www.google.com/imgres?u m=1&safe=active&sa=X&hl=en&n oj=1&biw=1024&bih=585&tbm=isc h&tbnid=FYqSO0UhFpTVBM%3A&i mgrefurl=http%3A%2F%2Fshare.e hs.uen.org%2Ftaxonomy%2Fterm %2F237%3Fpage%3D6&docid=s4H y89saY3ywM&imgurl=https%3A%2F%2 Fshare.ehs.uen.org%2Fsites%2Fdef ault%2Ffiles%2Fimages%2Funit4l2 congruent.png&w=191&h=139&ei =bDXZUpW_JpOekAff24CgBQ&zoo m=1&iact=rc&dur=4063&page=1& start=0&ndsp=15&ved=0CGcQrQ MwBQ •http://www.google.com/imgres? um=1&safe=active&hl=en&biw= 1024&bih=585&tbm=isch&tbnid= _iQEMm14LPy6kM%3A&imgref url=https%3A%2F%2Fshare.ehs .uen.org%2Fnode%2F14948&do cid=OIDrJxasIiXmLM&imgurl=htt ps%3A%2F%2Fshare.ehs.uen.o rg%2Fsites%2Fdefault%2Ffiles %2Fimages%2Fsquare_0.png& w=147&h=150&ei=0zTZUsiZDs_ NkQee8YHADg&zoom=1&iact=r c&dur=3735&page=1&start=0&n dsp=14&ved=0CFYQrQMwAA •http://www.google.com/imgres? um=1&safe=active&hl=en&biw= 1024&bih=585&tbm=isch&tbnid= H18yE9rqJTrTnM%3A&imgrefurl =http%3A%2F%2Fen.wikipedia. org%2Fwiki%2FRectangle&doci d=BbQmzrq9QCfY4M&imgurl=ht tp%3A%2F%2Fupload.wikimedi a.org%2Fwikipedia%2Fcommon s%2Fthumb%2F3%2F38%2FRe ct_Geometry.png%2F220pxRect_Geometry.png&w=220&h= 143&ei=KDTZUri8IYX6kQeUlIG YDQ&zoom=1&iact=rc&dur=379 7&page=2&start=10&ndsp=13&v ed=0CHoQrQMwDA •http://www.google.com/imgres?u m=1&safe=active&sa=N&biw=102 4&bih=585&hl=en&tbm=isch&tbni d=Iz_KqUvFofUCpM%3A&imgrefu rl=http%3A%2F%2Fmrbgeometry. wordpress.com%2Fquadrilaterals %2Fspecialquadrilaterals%2F&docid=C0IMKv 9_xxsDM&imgurl=https%3A%2F%2Fmr bgeometry.files.wordpress.com%2 F2012%2F03%2Frhombus-mar24-2012-10-33am.jpg&w=883&h=701&ei=gjPZUr GWGIO0kQf9vYC4BA&zoom=1&i act=rc&dur=1250&page=1&start= 0&ndsp=13&ved=0CG0QrQMwB w •http://www.google.com/imgres?u m=1&safe=active&hl=en&biw=102 4&bih=585&tbm=isch&tbnid=as3u IIWQqkmqNM%3A&imgrefurl=http %3A%2F%2Fwww.wyzant.com%2 Fresources%2Flessons%2Fmath %2Fgeometry%2Fquadrilaterals% 2Fproperties_of_parallelograms&d ocid=UoWo3FOBI5iLQM&imgurl= http%3A%2F%2Fwww.wyzant.co m%2FImages%2FHelp%2Fparalle logram1.gif&w=317&h=191&ei=U DrZUoDqLMjvkQeXloGICA&zoom =1&iact=rc&dur=203&page=1&sta rt=0&ndsp=11&ved=0CF8QrQMw Aw