Download Geometry Chapter 6 - Hudson Falls Middle School

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Geometry Chapter 6
By: Cate Hogan, Austin Underwood,
Paige Mager
Classifying Quadrilaterals
• Parallelogram: A quadrilateral with both pairs of
opposite sides being parallel
• Rhombus: A parallelogram with four congruent sides
• Rectangle: parallelogram with four right angles
• Square: parallelogram with four congruent sides and
four right angles
• Kite: a quadrilateral with two pairs of adjacent sides
congruent and no opposite sides congruent
• Trapezoid: a quadrilateral with exactly one pair of
opposite sides
Properties of Parallelograms
• Opposite sides of a parallelogram are
congruent
• Opposite sides are congruent
• Opposite angles are congruent
• Consecutive angles are supplementary
• Diagonals bisect each other
• Diagonals form two congruent triangles
Proving That a Quadrilateral is a
Parallelogram
• If both pairs of opposite sides of a quadrilateral are
congruent, it is a parallelogram
• If both pairs of opposite angles of a quadrilateral are
congruent, it is a parallelogram
• If the diagonals of a quadrilateral bisect each other, it
is a parallelogram
• If one pair of opposite sides of a quadrilateral is both
congruent and parallel, then it is a parallelogram
Special Parallelograms
• Rhombus:
– If one diagonal bisects two angles of a
parallelogram, then the parallelogram is a rhombus
– If the diagonals of a parallelogram are
perpendicular, then the parallelogram is a rhombus
• Rectangle:
– If the diagonals of a parallelogram are congruent,
then the parallelogram is a rectangle
• Square:
– Combine properties previously mentioned in the
slide
Trapezoids and Kites
• Trapezoid:
– Base sides are parallel
– The two pairs of angles between the bases are
supplementary
• Isosceles trapezoid:
– Look at properties of a trapezoid
– Base angles are congruent
– Diagonals are congruent
• Kite:
– Diagonals are perpendicular
– Side angles are congruent
– Vertical diagonals form two congruent triangles
– Diagonals bisect top and bottom angles
Placing figures in the Coordinate
Plane
• Consecutive points should be connected
segments of the shape
Proofs Using Coordinate Geometry
• The midsegment of a trapezoid is parallel to
the bases
• The length of a midsegment of a trapezoid is
(b +b )
2
1
2
Citations
•
•
•
Prentice Hall Mathematics
Geometry Textbook
http://www.google.com/imgres?u
m=1&safe=active&hl=en&noj=1&b
iw=1024&bih=585&tbm=isch&tbni
d=tVKakCfduEexWM%3A&imgrefu
rl=http%3A%2F%2Fwww.sparknot
es.com%2Ftestprep%2Fbooks%2F
newsat%2Fchapter20section5.rht
ml&docid=XBt3YIVvH7ywqM&img
url=http%3A%2F%2Fimg.sparknote
s.com%2Fcontent%2Ftestprep%2F
bookimgs%2Fnewsat%2F0008%2Ft
rapezoid.gif&w=150&h=83&ei=jXZUsHgIcvOkQer7YGYCw&zoom=
1&iact=rc&dur=47&page=1&start=
0&ndsp=14&ved=0CF4QrQMwAg
http://www.google.com/imgres?u
m=1&safe=active&sa=X&hl=en&n
oj=1&biw=1024&bih=585&tbm=isc
h&tbnid=FYqSO0UhFpTVBM%3A&i
mgrefurl=http%3A%2F%2Fshare.e
hs.uen.org%2Ftaxonomy%2Fterm
%2F237%3Fpage%3D6&docid=s4H
y89saY3ywM&imgurl=https%3A%2F%2
Fshare.ehs.uen.org%2Fsites%2Fdef
ault%2Ffiles%2Fimages%2Funit4l2
congruent.png&w=191&h=139&ei
=bDXZUpW_JpOekAff24CgBQ&zoo
m=1&iact=rc&dur=4063&page=1&
start=0&ndsp=15&ved=0CGcQrQ
MwBQ
•http://www.google.com/imgres?
um=1&safe=active&hl=en&biw=
1024&bih=585&tbm=isch&tbnid=
_iQEMm14LPy6kM%3A&imgref
url=https%3A%2F%2Fshare.ehs
.uen.org%2Fnode%2F14948&do
cid=OIDrJxasIiXmLM&imgurl=htt
ps%3A%2F%2Fshare.ehs.uen.o
rg%2Fsites%2Fdefault%2Ffiles
%2Fimages%2Fsquare_0.png&
w=147&h=150&ei=0zTZUsiZDs_
NkQee8YHADg&zoom=1&iact=r
c&dur=3735&page=1&start=0&n
dsp=14&ved=0CFYQrQMwAA
•http://www.google.com/imgres?
um=1&safe=active&hl=en&biw=
1024&bih=585&tbm=isch&tbnid=
H18yE9rqJTrTnM%3A&imgrefurl
=http%3A%2F%2Fen.wikipedia.
org%2Fwiki%2FRectangle&doci
d=BbQmzrq9QCfY4M&imgurl=ht
tp%3A%2F%2Fupload.wikimedi
a.org%2Fwikipedia%2Fcommon
s%2Fthumb%2F3%2F38%2FRe
ct_Geometry.png%2F220pxRect_Geometry.png&w=220&h=
143&ei=KDTZUri8IYX6kQeUlIG
YDQ&zoom=1&iact=rc&dur=379
7&page=2&start=10&ndsp=13&v
ed=0CHoQrQMwDA
•http://www.google.com/imgres?u
m=1&safe=active&sa=N&biw=102
4&bih=585&hl=en&tbm=isch&tbni
d=Iz_KqUvFofUCpM%3A&imgrefu
rl=http%3A%2F%2Fmrbgeometry.
wordpress.com%2Fquadrilaterals
%2Fspecialquadrilaterals%2F&docid=C0IMKv
9_xxsDM&imgurl=https%3A%2F%2Fmr
bgeometry.files.wordpress.com%2
F2012%2F03%2Frhombus-mar24-2012-10-33am.jpg&w=883&h=701&ei=gjPZUr
GWGIO0kQf9vYC4BA&zoom=1&i
act=rc&dur=1250&page=1&start=
0&ndsp=13&ved=0CG0QrQMwB
w
•http://www.google.com/imgres?u
m=1&safe=active&hl=en&biw=102
4&bih=585&tbm=isch&tbnid=as3u
IIWQqkmqNM%3A&imgrefurl=http
%3A%2F%2Fwww.wyzant.com%2
Fresources%2Flessons%2Fmath
%2Fgeometry%2Fquadrilaterals%
2Fproperties_of_parallelograms&d
ocid=UoWo3FOBI5iLQM&imgurl=
http%3A%2F%2Fwww.wyzant.co
m%2FImages%2FHelp%2Fparalle
logram1.gif&w=317&h=191&ei=U
DrZUoDqLMjvkQeXloGICA&zoom
=1&iact=rc&dur=203&page=1&sta
rt=0&ndsp=11&ved=0CF8QrQMw
Aw
Related documents