Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Dynamic Energy Budget theory 1 Basic Concepts 2 Standard DEB model 3 Metabolism 4 Univariate DEB models 5 Multivariate DEB models 6 Effects of compounds 7 Extensions of DEB models 8 Co-variation of par values 9 Living together 10 Evolution 11 Evaluation Taxa 10a Superkingdom Kingdom Subkingdom Tribe Subtribe Cladus Division Subdivision Taxon Phylum Subphylum Cohort Subcohort Superclass Class Subclass Infraclass Series Section Genus Subgenus Group Superorder Order Suborder Infraorder Superfamily Family Subfamily Species Subspecies Race Carolus Linneus (1758) Systema Naturae, 10th edition Link between classification & evolution Evolution is only partly understood Many species still wait for description Early ATP generation 10.1 FeS + S0 FeS2 ADP + Pi ATP • ATPase • hydrogenase • S-reductase FeS2 FeS H2 S0 H2S 2eS0 H2S 2H2O 2OH- 2H+ ADP Pi ATP 2H+ Madigan et al 1997 Ester vs Ether lipids 10.2 Eubacteria Archaea Nucleated prokaryotes 10.2a Planktomycetes Poribacteria Cellulose vs Chitine 10.2b n Cellulose (C12H20O10)n • Chitine (C16H26O10N2)n Opisthokonts produce chitine, not cellulose Except 2 taxa via lateral gene transfer from -proteobacteria Urochordates (Matthysse et al (2004) PNAS 27:986-981) Aspergillus fumigatus (Nobles et al Cellulose 11:437-448) Deuterostomes don’t produce chitine but CaCO3 and keratine in tetrapoda • Amoebas (Dictyostelium) & bikonts got cellulose synthetase from cyanobacteria • • Some chlorophytes produce chitinase Many fungi produce cellulase, no animals can (symbiosis) Ciona Aspergillus fumigatus Giardia (Eopharyngia, Metamonada) 10.2c Planktomycetes 10.2d • eubacteria with nuclear membranes like eukaryotes • some species can oxidize ammonia anaerobically they have ether lipids, like archaea • some species have genes for formaldehyde detoxification that archaea use for methanogenesis & archaea & eubacteria for methanotrophy • are abundant in stromatolites fossil stromatolites date from 3.5 Ga ago • propagate by budding • probably passed its 16 genes for C1-detoxification to archea for methane production/consumption Planctomyces Evolution of central metabolism 10.2.1 in prokaryotes (= bacteria) 3.8 Ga 2.7 Ga i = inverse ACS = acetyl-CoA Synthase pathway RC = Respiratory Chain PP = Pentose Phosphate cycle Gly = Glycolysis TCA = TriCarboxylic Acid cycle Kooijman, Hengeveld 2005 Prokaryotic metabolic evolution 10.2.1a Heterotrophy: • pentose phosph cycle • glycolysis • respiration chain Phototrophy: • el. transport chain • PS I & PS II • Calvin cycle Chemolithotrophy • acetyl-CoA pathway • inverse TCA cycle • inverse glycolysis Survey of organisms 10.2.3 Sizes of blobs do not reflect number of species forams fungi Cercozoa animals Alveolates chloroplasts cortical alveoli Amoebozoa Excavates triple roots Bacteria Bikont DHFR-TS gene fusion loss phagoc. membr. dyn unikont mainly celllose gap junctions tissues (nervous) bicentriolar mainly chitin EF1 insertion Plantae Survey of organisms 10.2.3a (brown algae) Phaeophyceae Basidiomycota Xanthophyceae Raphidophyceae Ascomycota Chrysophyceae Synurophyceae Actinopoda Zygomycota Eustigmatophyceae Microsporidia Labyrinthulomycota Dictyochophyceae Bicosoecia Pedinellophyceae Chytridiomycota Pelagophyceae Plasmodiophoromycota Pseudofungi Bacillariophyceae Chlorarachnida (diatoms) Opalinata Cercomonada Choanozoa Bolidophyceae Granuloreticulata Xenophyophora animals Apusozoa mitochondria primary chloroplast secondary chloroplast tertiary chloroplast photo symbionts Bacteria Metamonada Parabasalia Myxomycota Protostelida Archaeprotista Rhizopod a Percolozoa Euglenozoa Kinetoplastida Diplonemida Loukozoa Prymnesiophyceae Cryptophyceae Sporozoa Dinozoa Ciliophora (plants) Cormophyta (green algae) Chlorophyceae (red algae) Rhodophyceae Glaucophyceae Survey of “algae 10.2.3b (brown algae) Phaeophyceae Basidiomycota Xanthophyceae Raphidophyceae Ascomycota Chrysophyceae Synurophyceae Actinopoda Zygomycota Eustigmatophyceae Microsporidia Labyrinthulomycota Dictyochophyceae Bicosoecia Pedinellophyceae Chytridiomycota Pelagophyceae Plasmodiophoromycota Pseudofungi Bacillariophyceae Chlorarachnida (diatoms) Opalinata Cercomonada Choanozoa Bolidophyceae Granuloreticulata Xenophyophora animals Apusozoa Algae: “little green things” but many many exceptions Metamonada Parabasalia Myxomycota Protostelida Archaeprotista Rhizopod a Prymnesiophyceae Cryptophyceae Percolozoa Euglenozoa Kinetoplastida Diplonemida Sporozoa Dinozoa Ciliophora Loukozoa (plants) Cormophyta (green algae) Chlorophyceae (red algae) Rhodophyceae Glaucophyceae Bacteria The biggest organism is a “micro-organism” (Endo)symbiosis 10.2.3c Paramecium bursaria ciliate with green algae Cladonia diversa ascomycete with green algae Ophrydium versatile ciliate with green algae Peltigera ascomycete with green algae Please open DEB Ch10 Part II