Download Dynamic Energy Budget theory

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Dynamic Energy Budget theory
1 Basic Concepts
2 Standard DEB model
3 Metabolism
4 Univariate DEB models
5 Multivariate DEB models
6 Effects of compounds
7 Extensions of DEB models
8 Co-variation of par values
9 Living together
10 Evolution
11 Evaluation
Taxa 10a
Superkingdom
Kingdom
Subkingdom
Tribe
Subtribe
Cladus
Division
Subdivision
Taxon
Phylum
Subphylum
Cohort
Subcohort
Superclass
Class
Subclass
Infraclass
Series
Section
Genus
Subgenus
Group
Superorder
Order
Suborder
Infraorder
Superfamily
Family
Subfamily
Species
Subspecies
Race
Carolus Linneus (1758)
Systema Naturae, 10th edition
Link between
classification & evolution
Evolution is only partly
understood
Many species still wait for
description
Early ATP generation 10.1
FeS + S0  FeS2
ADP + Pi  ATP
• ATPase
• hydrogenase
• S-reductase
FeS2
FeS
H2
S0
H2S
2eS0
H2S
2H2O
2OH-
2H+
ADP
Pi
ATP
2H+
Madigan et al 1997
Ester vs Ether lipids 10.2
Eubacteria
Archaea
Nucleated prokaryotes 10.2a
Planktomycetes
Poribacteria
Cellulose vs Chitine 10.2b
n
Cellulose (C12H20O10)n
•
Chitine (C16H26O10N2)n
Opisthokonts produce chitine, not cellulose
Except 2 taxa via lateral gene transfer from -proteobacteria
Urochordates (Matthysse et al (2004) PNAS 27:986-981)
Aspergillus fumigatus (Nobles et al Cellulose 11:437-448)
Deuterostomes don’t produce chitine
but CaCO3 and keratine in tetrapoda
•
Amoebas (Dictyostelium) & bikonts got cellulose
synthetase from cyanobacteria
•
•
Some chlorophytes produce chitinase
Many fungi produce cellulase, no animals can (symbiosis)
Ciona
Aspergillus fumigatus
Giardia (Eopharyngia, Metamonada) 10.2c
Planktomycetes 10.2d
• eubacteria with nuclear membranes
like eukaryotes
• some species can oxidize ammonia anaerobically
they have ether lipids, like archaea
• some species have genes for formaldehyde detoxification
that archaea use for methanogenesis &
archaea & eubacteria for methanotrophy
• are abundant in stromatolites
fossil stromatolites date from 3.5 Ga ago
• propagate by budding
• probably passed its 16 genes for C1-detoxification
to archea for methane production/consumption
Planctomyces
Evolution of central metabolism
10.2.1
in prokaryotes (= bacteria)
3.8 Ga
2.7 Ga
i = inverse
ACS = acetyl-CoA Synthase pathway RC = Respiratory Chain
PP = Pentose Phosphate cycle
Gly = Glycolysis
TCA = TriCarboxylic Acid cycle
Kooijman, Hengeveld 2005
Prokaryotic metabolic evolution 10.2.1a
Heterotrophy:
• pentose phosph cycle
• glycolysis
• respiration chain
Phototrophy:
• el. transport chain
• PS I & PS II
• Calvin cycle
Chemolithotrophy
• acetyl-CoA pathway
• inverse TCA cycle
• inverse glycolysis
Survey of organisms 10.2.3
Sizes of blobs
do not reflect
number of species
forams
fungi
Cercozoa
animals
Alveolates
chloroplasts
cortical alveoli
Amoebozoa
Excavates
triple roots
Bacteria
Bikont
DHFR-TS gene fusion
loss phagoc.
membr. dyn
unikont
mainly celllose
gap junctions
tissues (nervous)
bicentriolar
mainly chitin
EF1 insertion
Plantae
Survey of organisms 10.2.3a
(brown algae)
Phaeophyceae
Basidiomycota
Xanthophyceae Raphidophyceae
Ascomycota
Chrysophyceae
Synurophyceae
Actinopoda
Zygomycota
Eustigmatophyceae
Microsporidia
Labyrinthulomycota
Dictyochophyceae
Bicosoecia
Pedinellophyceae
Chytridiomycota
Pelagophyceae
Plasmodiophoromycota
Pseudofungi
Bacillariophyceae
Chlorarachnida
(diatoms)
Opalinata
Cercomonada
Choanozoa
Bolidophyceae
Granuloreticulata
Xenophyophora
animals
Apusozoa
mitochondria
primary
chloroplast
secondary
chloroplast
tertiary
chloroplast
photo
symbionts
Bacteria
Metamonada
Parabasalia
Myxomycota
Protostelida
Archaeprotista
Rhizopod
a
Percolozoa
Euglenozoa
Kinetoplastida
Diplonemida
Loukozoa
Prymnesiophyceae
Cryptophyceae
Sporozoa
Dinozoa
Ciliophora
(plants)
Cormophyta
(green algae)
Chlorophyceae
(red algae)
Rhodophyceae
Glaucophyceae
Survey of “algae 10.2.3b
(brown algae)
Phaeophyceae
Basidiomycota
Xanthophyceae Raphidophyceae
Ascomycota
Chrysophyceae
Synurophyceae
Actinopoda
Zygomycota
Eustigmatophyceae
Microsporidia
Labyrinthulomycota
Dictyochophyceae
Bicosoecia
Pedinellophyceae
Chytridiomycota
Pelagophyceae
Plasmodiophoromycota
Pseudofungi
Bacillariophyceae
Chlorarachnida
(diatoms)
Opalinata
Cercomonada
Choanozoa
Bolidophyceae
Granuloreticulata
Xenophyophora
animals
Apusozoa
Algae: “little
green things”
but
many many
exceptions
Metamonada
Parabasalia
Myxomycota
Protostelida
Archaeprotista
Rhizopod
a
Prymnesiophyceae
Cryptophyceae
Percolozoa
Euglenozoa
Kinetoplastida
Diplonemida
Sporozoa
Dinozoa
Ciliophora
Loukozoa
(plants)
Cormophyta
(green algae)
Chlorophyceae
(red algae)
Rhodophyceae
Glaucophyceae
Bacteria
The biggest organism is a “micro-organism”
(Endo)symbiosis
10.2.3c
Paramecium bursaria
ciliate with green algae
Cladonia diversa
ascomycete with green algae
Ophrydium versatile
ciliate with green algae
Peltigera
ascomycete with green algae
Please open DEB Ch10 Part II
Related documents