Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Fig. 13-CO, p. 347 Fig. 13-1, p. 348 Fig. 13-2, p. 349 Sunlight Chlorophyll Produces 6 Carbon + 6 Water dioxide (CO2) (H2O) Glucose (C6H12O6) + 6 Oxygen (O2) Fig. 13-2, p. 349 Sunlight Chlorophyll Produces 6 Carbon + 6 Water dioxide (CO2) (H2O) Glucose (C6H12O6) + 6 Oxygen (O2) Stepped Art Fig. 13-2, p. 349 Fig. 13-3, p. 350 Sun Producers Photosynthesizers: Green plants and algae, and specialized bacteria Consumers Respirers: Animals and decomposers and plants at night To space Fig. 13-3, p. 350 Sun Producers Photosynthesizers: Green plants and algae, and specialized bacteria Consumers Respirers: Animals and decomposers and plants at night To space Stepped Art Fig. 13-3, p. 350 Fig. 13-4, p. 350 6 Carbon dioxide + (CO2) Glucose (C6H12O6) 6 Oxygen (O2) + + 24 sulfur (S) 24 Hydrogen sulfide (H2S) + 18 Water (H2O) Fig. 13-4, p. 350 6 Carbon dioxide + (CO2) Glucose (C6H12O6) 6 Oxygen (O2) + + 24 sulfur (S) 24 Hydrogen sulfide (H2S) + 18 Water (H2O) Stepped Art Fig. 13-4, p. 350 Fig. 13-5a, p. 351 1 meter 1 meter CO2 Carbon dioxide Diatom C6H12O6 Glucose Typically, oceanic primary productivity in this water column will bind ~120 grams of carbon into molecules of glucose each year. a to bottom of ocean Fig. 13-5a, p. 351 Fig. 13-5b, p. 351 Fig. 13-5c, p. 351 Table 13-1, p. 352 Fig. 13-6a, p. 352 Fig. 13-6b, p. 352 LOW HIGH Fig. 13-6b, p. 352 Fig. 13-7, p. 353 Fig. 13-8, p. 354 Trophic Level A tuna sandwich 100 g (1/4 pound) 5 For each kilogram of tuna, roughly 10 kilograms of midsize fish must be consumed, Tuna (top consumers) 3 and 100 kilograms of small fish, Midsize fishes (consumers) Small fishes and larvae (consumers) 2 and 1,000 kilograms of small herbivores, Zooplankton (primary consumers) 1 and 10,000 kilograms of primary producers. Phytoplankton (primary producers) 4 Fig. 13-8, p. 354 Fig. 13-9, p. 355 Fifth level top carnivore Killer Whales Fourth level consumers Third level consumers Seals Sperm whale Penguins Birds Second levelBaleen whales consumers Carnivorous zooplankton Primary consumers Copepods Krill Squid Pelagic fishes Protozoans Primary producers Demersal fishes Benthic invertebrates Detritus Microplankton Bacteria Macroalgae Fig. 13-9, p. 355 Table 13-2, p. 356 Fig. 13-10, p. 357 CO2 in atmosphere to plants for photosynthesis CO2 in the atmosphere Precipitation Respiration Dissolved CO2 Decomposers Plant Peat residues coal Limestone Dissolved CO2 forms HCO3– Shells CO2 is taken up by phytoplankton for photosynthesis Decomposition Sediments Limestone Fig. 13-10, p. 357 Fig. 13-11, p. 358 Atmospheric nitrogen Photic zone Nitrogen fixation by bacteria Nitrogen cycling within the photic zone Producers incorporate nitrogen into amino acids Nutrient settling Nutrient upwelling Runoff Runoff: fertilizers, nitrates, plant material Fig. 13-11, p. 358 Fig. 13-12, p. 358 Mining Excretion Fertilizers Guano Agriculture Uptake by autotrophs Marine food webs Weathering Dissolved in ocean water Leaching, runoff Uptake by autotrophs Dissolved in soil water, lakes, rivers Land food webs Death, Death, decomposition decomposition Sedimentation Settling out Weathering Uplifting over geologic time Rocks Marine sediments Fig. 13-12, p. 358 Fig. 13-13, p. 360 Limiting Factors 90°N Light Silicon Phosphorous 45°N Nitrogen Fe (Iron) 0° 45°S 90°S 180° 90°W 0° 90°E 180° Fig. 13-13, p. 360 Fig. 13-14, p. 361 Wavelength (nanometers) 500 600 700 Sea surface 400 Photic zone Increasing depth Aphotic zone Approximately 600 m (2,000 ft) a Clear, open ocean water Fig. 13-14a, p. 361 Wavelength (nanometers) 400 500 600 700 Approximately 100 m (330 ft) Aphotic zone Photic zone Sea surface b Coastal ocean water Fig. 13-14b, p. 361 Fig. 13-15, p. 361 Depth 0m Enough sunlight for: Photosynthesis and vision Euphotic zone to ~70 meters (230 feet) 100 m 200 m 300 m Vision only—Not enough sunlight for photosynthesis 400 m Disphotic zone to ~600 meters (2,000 feet) 500 m 600 m No sunlight Aphotic zone below 600 meters (2,000 Fig. 13-15, p. 361 feet) Fig. 13-16, p. 362 105 100 °F °C Daytime temperatures in some shallow tropical lagoons 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 40 35 Highest surface temperatures in open ocean 30 Common surface temperatures in tropical waters 25 Common surface temperatures in subtropical waters Common surface temperatures in temperate waters Common surface temperatures in high-latitude temperate waters 20 15 10 5 Surface temperatures in low Arctic and Antarctic waters in summer Surface temperatures of high Arctic and Antarctic waters all year (seawater freezes at –1.9°C) Temperature at depths of deepest Antarctic basins 0 –5 Fig. 13-16, p. 362 Table 13-3, p. 363 Fig. 13-17, p. 364 Water Dye cube Day 1 Day 2 Day 5 Day 20 Fig. 13-17, p. 364 Water Dye cube Day 1 Day 2 Day 5 Day 20 Stepped Art Fig. 13-17, p. 364 Fig. 13-18, p. 365 Cell membrane Outside the cell Inside the cell No net water movement Cell membrane Outside the cell Inside the cell Net water movement out of the cell Cell membrane Outside the cell Inside the cell Net water movement into the cell Fig. 13-18 (top), p. 365 Isotonic (no net change in water movement or in shapes of cells) Hypertonic (water diffuses outward, cells shrivel) Hypotonic (water diffuses inward, cells swell up) Fig. 13-18 (bottom), p. 365 Fig. 13-19, p. 366 a Diffusion Fig. 13-19a, p. 366 b Osmosis Fig. 13-19b, p. 366 “Pump” c Active transport Fig. 13-19c, p. 366 Fig. 13-20, p. 366 Diameter (cm) Surface area (cm2) Volume (cm3) Surface-to-volume ratio 1 2 4 3.14 12.56 50.24 0.52 4.19 33.51 6.0 3.0 1.5 Fig. 13-20, p. 366 Fig. 13-21, p. 367 Fig. 13-22, p. 368 Box 13-1a, p. 369 Box 13-1b, p. 369 Box 13-1c, p. 370 Box 13-1d, p. 370 Table a, p. 370 Fig. 13-23, p. 372 Shark Jawless fishes Class Chondrichthyes (cartilaginous fishes) Land-dwelling stem reptiles Pectoral fin Ichthyosaur Class Reptilia (reptiles) Class Aves (birds) Flipper (derived from a foreleg) Penguin Flipper (derived from a wing) Dolphin Class Mammalia (mammals) Flipper (derived from a foreleg) Fig. 13-23, p. 372 Fig. 13-24, p. 373 Fig. 13-25, p. 373 Complex many-celled organisms and cells with a nucleus: the EUKARYOTES Kingdom Animalia Kingdom Fungi Cells with no nucleus: the PROKARYOTES Kingdom Plantae Kingdom Protista Kingdom Archaea Kingdom Bacteria Earliest cells Fig. 13-25, p. 373 Fig. 13-26, p. 374 Bacteria Archaea Protista Fungi Plantae Animalia of taxon TAXON Name that includes 1 2 3 KINGDOM ANIMALIA Annelida Mollusca 1 Cnidaria 2 4 3 4 5 6 Rex sole Animalia Chordata KINGDOM (contains 31 phyla) 31 Echinodermata Fig. 13-26a, p. 374 PHYLUM CHORDATA Uro- and Cephalo-chordata 1 2 Vertebrata PHYLUM Chordata (contains 3 subphyla) 3 SUBPHYLUM VERTEBRATA Aves 1 Mammalia 2 3 Chondrichthyes Amphibia 4 Reptilia 5 Osteichthyes SUBPHYLUM 6 Agnatha 7 Vertebrata (contains 7 classes) Fig. 13-26a, p. 374 CLASS OSTEICHTHYES Clupeiformes 1 Perciformes 2 3 Gadiformes Pleuronectiformes 4 Lophiiformes 37 ORDER PLEURONECTIFORMES Citharidae Cynoglossidae 1 Psettodidae 2 3 Bothidae 4 CLASS Osteichthyes (contains about 37 orders) Pleuronectidae ORDER 5 Soleidae 6 Pleuronectiformes (contains 6 families) Fig. 13-26b, p. 374 FAMILY PLEURONECTIDAE Hippoglossus 1 FAMILY Platichthys Glyptocephalus 4 2 3 Parophrys Limanda GENUS GLYPTOCEPHALUS cynoglossus 1 41 zachirus Pleuronectidae (contains 41 genera) GENUS SPECIES 2 Witch flounder Rex sole Glyptocephalus (contains 2 species) zachirus Fig. 13-26b, p. 374 Table 13-4, p. 375